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Classification with parametrized models

Classifiers with a fixed number of parameters can represent a limited set
of functions. Learning a model is about picking a good approximation.

Typically the x ’s are points in d-dimensional Euclidean space, Rd .

Two ways to classify:

•
Generative: model the individual classes.

•
Discriminative: model the decision boundary between the classes.



The Bayes-optimal prediction

x

Pr(x)

P1(x)

P2(x)

P3(x)

π1=
10%

π2=
50%

π3=
40%

Labels Y = {1, 2, . . . , k}, density Pr(x) = ⇡1P1(x) + · · · + ⇡kPk(x).

For any x 2 X and any label j ,

Pr(y = j |x) =
Pr(y = j)Pr(x |y = j)

Pr(x)
=

⇡jPj(x)
Pk

i=1 ⇡iPi (x)

Bayes-optimal prediction: h⇤(x) = arg maxj ⇡jPj(x).

The winery prediction problem

Which winery is it from, 1, 2, or 3?

Using one feature (’Alcohol’), error rate is 29%.

What if we use two features?



The data set, again

Training set obtained from 130 bottles

• Winery 1: 43 bottles

• Winery 2: 51 bottles

• Winery 3: 36 bottles

• For each bottle, 13 features:
’Alcohol’, ’Malic acid’, ’Ash’, ’Alcalinity of ash’,’Magnesium’,
’Total phenols’, ’Flavanoids’, ’Nonflavanoid phenols’,
’Proanthocyanins’,
’Color intensity’, ’Hue’, ’OD280/OD315 of diluted wines’, ’Proline’

Also, a separate test set of 48 labeled points.

This time: ’Alcohol’ and ’Flavanoids’.

Why it helps to add features

Better separation between the classes!

Error rate drops from 29% to 8%.



Bivariate distributions

Simplest option: treat each variable as independent.

Example: For a large collection of people, measure the two variables

H = height

W = weight

Independence would mean

Pr(H = h,W = w) = Pr(H = h) Pr(W = w),

which would also imply E(HW ) = E(H)E(W ).

Is this an accurate approximation?
No: we’d expect height and weight to be positively correlated.

Types of correlation

height

weight
H,W positively correlated.
This also implies

E(HW ) > E(H)E(W ).

Y

X
X ,Y negatively correlated

Y

X
X ,Y uncorrelated



Pearson (1903): fathers and sons

PEARSON’S FATHER-SON DATA

• The following scatter diagram shows the heights of 1,078
fathers and their full-grown sons, in England, circa 1900.
There is one dot for each father-son pair.
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Heights of fathers and their full grown sons

• How would you describe the relationship between the heights
of the fathers and the heights of their sons?

• For a father of a given height, what height would you predict
for his son?
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• How tall are the sons of 6 foot fathers?
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Father-son pairs where the father is 6 feet tall

�

• The points in the vertical chimney are the father-son pairs
where the father is 6 feet tall, to the nearest inch.

• The cross marks the average height of the sons of these
fathers.

• These sons are inches tall, on average.

• This is the natural guess for the height of a son of a 6
foot father.

10–2

How to quantify the degree of correlation?

Correlation pictures

r = 0 r = 1

r = 0.25 r = �0.25

r = 0.5 r = �0.5

r = 0.75 r = �0.75



Covariance and correlation

Suppose X has mean µX and Y has mean µY .

• Covariance

cov(X ,Y ) = E[(X � µX )(Y � µY )] = E[XY ] � µXµY

Maximized when X = Y , in which case it is var(X ).
In general, it is at most std(X )std(Y ).

• Correlation

corr(X ,Y ) =
cov(X ,Y )

std(X )std(Y )

This is always in the range [�1, 1].

Covariance and correlation: example 1

cov(X ,Y ) = E[(X � µX )(Y � µY )] = E[XY ] � µXµY

corr(X ,Y ) =
cov(X ,Y )

std(X )std(Y )

x y Pr(x , y)
�1 �1 1/3
�1 1 1/6
1 �1 1/3
1 1 1/6

µX = 0

µY = � 1/3

var(X ) = 1

var(Y ) = 8/9

cov(X ,Y ) = 0

corr(X ,Y ) = 0

In this case, X ,Y are independent. Independent variables always have
zero covariance and correlation.



Covariance and correlation: example 2

cov(X ,Y ) = E[(X � µX )(Y � µY )] = E[XY ] � µXµY

corr(X ,Y ) =
cov(X ,Y )

std(X )std(Y )

x y Pr(x , y)
�1 �10 1/6
�1 10 1/3
1 �10 1/3
1 10 1/6

µX = 0

µY = 0

var(X ) = 1

var(Y ) = 100

cov(X ,Y ) = � 10/3

corr(X ,Y ) = � 1/3

In this case, X and Y are negatively correlated.

Return to winery example

Better separation between the classes!

Error rate drops from 29% to 8%.



The bivariate Gaussian

Model class 1 by a bivariate Gaussian, parametrized by:

mean µ =

✓
13.7
3.0

◆
and covariance matrix ⌃ =

✓
0.20 0.06
0.06 0.12

◆

The bivariate (2-d) Gaussian

A distribution over (x1, x2) 2 R2, parametrized by:

•
Mean (µ1, µ2) 2 R2, where µ1 = E(X1) and µ2 = E(X2)

•
Covariance matrix ⌃ =


⌃11 ⌃12

⌃21 ⌃22

�
where

8
<

:

⌃11 = var(X1)
⌃22 = var(X2)

⌃12 = ⌃21 = cov(X1,X2)

9
=

;

Density is highest at the mean, falls
o↵ in ellipsoidal contours.



Density of the bivariate Gaussian

•
Mean (µ1, µ2) 2 R2, where µ1 = E(X1) and µ2 = E(X2)

•
Covariance matrix ⌃ =


⌃11 ⌃12

⌃21 ⌃22

�

Density p(x1, x2) =
1

2⇡|⌃|1/2
exp

 
�1

2


x1 � µ1

x2 � µ2

�T
⌃�1


x1 � µ1

x2 � µ2

�!

Bivariate Gaussian: examples

In either case, the mean is (1, 1).

⌃ =


4 0
0 1

�
⌃ =


4 1.5

1.5 1

�



The decision boundary

Go from 1 to 2 features: error rate goes from 29% to 8%.

What kind of function is this? And, can we use more features?



DSE 210: Probability and statistics Winter 2018

Worksheet 6 — Generative models 2

1. Would you expect the following pairs of random variables to be uncorrelated, positively correlated, or

negatively correlated?

(a) The weight of a new car and its price.

(b) The weight of a car and the number of seats in it.

(c) The age in years of a second-hand car and its current market value.

2. Consider a population of married couples in which every wife is exactly 0.9 of her husband’s age. What

is the correlation between husband’s age and wife’s age?

3. Each of the following scenarios describes a joint distribution (x, y). In each case, give the parameters

of the (unique) bivariate Gaussian that satisfies these properties.

(a) x has mean 2 and standard deviation 1, y has mean 2 and standard deviation 0.5, and the

correlation between x and y is �0.5.

(b) x has mean 1 and standard deviation 1, and y is equal to x.

4. Roughly sketch the shapes of the following Gaussians N(µ,⌃). For each, you only need to show a

representative contour line which is qualitatively accurate (has approximately the right orientation, for

instance).

(a) µ =

✓
0

0

◆
and ⌃ =

✓
9 0

0 1

◆

(b) µ =

✓
0

0

◆
and ⌃ =

✓
1 �0.75

�0.75 1

◆

5. For each of the two Gaussians in the previous problem, check your answer using Python: draw 100

random samples from that Gaussian and plot it.

6-1



Linear algebra primer

DSE 210

Data as vectors and matrices
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Matrix-vector notation

Vector x 2 Rd
:

x =

0

BBBBB@

x1

x2

x3
.

.

.

xd

1

CCCCCA

Matrix M 2 Rr⇥d
:

M =

0

BBB@

M11 M12 · · · M1d

M21 M22 · · · M2d
.

.

.

.

.

.

.

.

.

.

.

.

Mr1 Mr2 · · · Mrd

1

CCCA

Mij = entry at row i , column j

Transpose of vectors and matrices

x =

0

BB@

1

6

3

0

1

CCA has transpose x

T
=

M =

0

@
1 2 0 4

3 9 1 6

8 7 0 2

1

A
has transpose M

T
= .

•
(A

T
)ij = Aji

•
(A

T
)

T
= A



Adding and subtracting vectors and matrices

Dot product of two vectors

Dot product of vectors x , y 2 Rd
:

x · y = x1y1 + x2y2 + · · ·+ xdyd .

What is the dot product between these two vectors?

0 1 2 3 4 

1 

2 

3 

4 

-1 -2 -3 -4 

x

y



Dot products and angles

Dot product of vectors x , y 2 Rd
:

x · y = x1y1 + x2y2 + · · ·+ xdyd .

Tells us the angle between x and y :

y
✓

x

cos ✓ =

x · y
kxk kyk .

x is orthogonal (at right angles) to y if and only if x · y = 0 When

x , y are unit vectors (length 1): cos ✓ = x · y What is x · x?

Linear and quadratic functions

In one dimension:

•
Linear: f (x) = 3x + 2

•
Quadratic: f (x) = 4x

2 � 2x + 6

In higher dimension, e.g. x = (x1, x2, x3):

•
Linear: 3x1 � 2x2 + x3 + 4

•
Quadratic: x

2
1 � 2x1x3 + 6x

2
2 + 7x1 + 9



Linear functions and dot products

Linear separator

4x1 + 3x2 = 12:

0 21 43 5

1

2

3

4

5

For x = (x1, . . . , xd) 2 Rd
, linear separators are of the form:

w1x1 + w2x2 + · · ·+ wdxd = c .

Can write as w · x = c , for w = (w1, . . . ,wd).

More general linear functions

A linear function from R4
to R: f (x1, x2, x3, x4) = 3x1 � 2x3

A linear function from R4
to R3

:

f (x1, x2, x3, x4) = (4x1 � x2, x3,�x1 + 6x4)



Matrix-vector product

Product of matrix M 2 Rr⇥d
and vector x 2 Rd

:

The identity matrix

The d ⇥ d identity matrix Id sends each x 2 Rd
to itself.

Id =

0

BBBBB@

1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 · · · 1

1

CCCCCA



Matrix-matrix product

Product of matrix A 2 Rr⇥k
and matrix B 2 Rk⇥p

:



Matrix products

If A 2 Rr⇥k
and B 2 Rk⇥p

, then AB is an r ⇥ p matrix with (i , j)
entry

(AB)ij = (dot product of ith row of A and jth column of B)

=

kX

`=1

Ai`B`j

•
IkB = B and A Ik = A

•
Can check: (AB)

T
= B

T
A

T

•
For two vectors u, v 2 Rd

, what is u

T
v?

Some special cases

For vector x 2 Rd
, what are x

T
x and xx

T
?



Associative but not commutative

•
Multiplying matrices is not commutative: in general,

AB 6= BA

✓
1 2

0 1

◆✓
1 0

1 0

◆
=

✓
1 0

1 0

◆✓
1 2

0 1

◆
=

•
But it is associative: ABCD = (AB)(CD) = (A(BC ))D, etc.

Example: if x 2 Rd
has length 2, what is x

T
xx

T
xx

T
xx

T
x?

A special case

Recall: For vector x 2 Rd
, we have x

T
x = kxk2.

What about x

T
Mx , for arbitrary d ⇥ d matrix M?



What is x

T
Mx for M =

✓
1 2

0 3

◆
?

Quadratic functions

Let M be any d ⇥ d (square) matrix.

For x 2 Rd
, the mapping x 7! x

T
Mx is a quadratic function

from Rd
to R:

x

T
Mx =

dX

i ,j=1

Mijxixj .

What is the quadratic function associated with M =

0

@
1 0 0

0 2 0

3 4 5

1

A
?



Write the quadratic function f (x1, x2) = x

2
1 + 2x1x2 + 3x

2
2 using

matrices and vectors.

Special cases of square matrices

•
Symmetric: M = M

T

0

@
1 2 3

2 4 5

3 5 6

1

A ,

0

@
1 2 3

1 2 4

3 4 6

1

A

•
Diagonal: M = diag(m1,m2, . . . ,md)

diag(1, 4, 7) =

0

@
1 0 0

0 4 0

0 0 7

1

A



Determinant of a square matrix

Determinant of A =

✓
a b

c d

◆
is |A| = ad � bc .

Example: A =

✓
3 1

1 2

◆



Inverse of a square matrix

The inverse of a d ⇥ d matrix A is a d ⇥ d matrix B for which

AB = BA = Id .

Notation: A

�1
.

Example: if A =

✓
1 2

�2 0

◆
then A

�1
=

✓
0 �1/2
1/2 1/4

◆
. Check!

Inverse of a square matrix, cont’d

The inverse of a d ⇥ d matrix A is a d ⇥ d matrix B for which

AB = BA = Id .

Notation: A

�1
.

•
Not all square matrices have an inverse

•
Square matrix A is invertible if and only if |A| 6= 0

•
What is the inverse of A = diag(a1, . . . , ad)?



DSE 210: Probability and statistics Winter 2018

Worksheet 7 — Linear algebra primer

1. Find the unit vector in the same direction as x = (1, 2, 3).

2. Find all unit vectors in R2 that are orthogonal to (1, 1).

3. How would you describe the set of all points x 2 Rd with x · x = 25?

4. The function f(x) = 2x1 � x2 + 6x3 can be written as w · x for x 2 R3. What is w?

5. For a certain pair of matrices A,B, the product AB has dimension 10⇥ 20. If A has 30 columns, what
are the dimensions of A and B?

6. We have n data points x(1)
, . . . , x

(n) 2 Rd and we store them in a matrix X, one point per row.

(a) What is the dimension of X?

(b) What is the dimension of XX

T ?

(c) What is the (i, j) entry of XX

T , simply?

7. Vector x has length 10. What is xT
xx

T
xx

T
x?

8. For x = (1, 3, 5) compute x

T
x and xx

T .

9. Vectors x, y 2 Rd both have length 2. If xT
y = 2, what is the angle between x and y?

10. The quadratic function f : R3 ! R given by

f(x) = 3x2
1 + 2x1x2 � 4x1x3 + 6x2

3

can be written in the form x

T
Mx for some symmetric matrix M . What is M?

11. Which of the following matrices is necessarily symmetric?

(a) AA

T for arbitrary matrix A.

(b) A

T
A for arbitrary matrix A.

(c) A+A

T for arbitrary square matrix A.

(d) A�A

T for arbitrary square matrix A.

12. Let A = diag(1, 2, 3, 4, 5, 6, 7, 8).

(a) What is |A|?
(b) What is A�1?

13. Vectors u1, . . . , ud 2 Rd all have unit length and are orthogonal to each other. Let U be the d ⇥ d

matrix whose rows are the ui.

(a) What is UU

T ?

(b) What is U�1?

14. Matrix A =

✓
1 2
3 z

◆
is singular. What is z?

7-1
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Recall: the bivariate Gaussian

Bivariate Gaussian, parametrized by:

mean µ =

✓
13.7
3.0

◆
and covariance matrix ⌃ =

✓
0.20 0.06
0.06 0.12

◆



The multivariate Gaussian

µ

N(µ,⌃): Gaussian in Rd

• mean: µ 2 Rd

• covariance: d ⇥ d matrix ⌃

Generates points X = (X1,X2, . . . ,Xd

).

• µ is the vector of coordinate-wise means:

µ1 = EX1, µ2 = EX2, . . . , µ
d

= EX
d

.

• ⌃ is a matrix containing all pairwise covariances:

⌃
ij

= ⌃
ji

= cov(X
i

,X
j

) if i 6= j

⌃
ii

= var(X
i

)

Density p(x) =
1

(2⇡)d/2|⌃|1/2
exp

✓
�1

2
(x � µ)T⌃�1(x � µ)

◆

Special case: independent features

Suppose the X

i

are independent, and var(X
i

) = �2
i

.

What is the covariance matrix ⌃, and what is its inverse ⌃�1?



Diagonal Gaussian
Diagonal Gaussian: the X

i

are independent, with variances �2
i

. Thus

⌃ = diag(�2
1 , . . . , �

2
d

) (o↵-diagonal elements zero)

Each X

i

is an independent one-dimensional Gaussian N(µ
i

, �2
i

):

Pr(x) = Pr(x1)Pr(x2) · · · Pr(x
d

) =
1

(2⇡)d/2�1 · · · �
d

exp

 
�

dX

i=1

(x
i

� µ
i

)2

2�2
i

!

Contours of equal density are axis-
aligned ellipsoids centered at µ:

�1µ

�2

Even more special case: spherical Gaussian

The X

i

are independent and all have the same variance �2.

⌃ = �2
I

d

= diag(�2, �2, . . . , �2) (diagonal elements �2, rest zero)

Each X

i

is an independent univariate Gaussian N(µ
i

, �2):

Pr(x) = Pr(x1)Pr(x2) · · · Pr(x
d

) =
1

(2⇡)d/2�d

exp

✓
�kx � µk2

2�2

◆

Density at a point depends only on
its distance from µ: µ



How to fit a Gaussian to data

Fit a Gaussian to data points x (1), . . . , x (m) 2 Rd .

• Empirical mean

µ =
1

m

⇣
x

(1) + · · · + x

(m)
⌘

• Empirical covariance matrix has i , j entry:

⌃
ij

=

 
1

m

mX

k=1

x

(k)
i

x

(k)
j

!
� µ

i

µ
j

Back to the winery data

Go from 1 to 2 features: test error goes from 29% to 8%.

With all 13 features: test error rate goes to zero.



The multivariate Gaussian

µ

N(µ,⌃): Gaussian in Rd

• mean: µ 2 Rd

• covariance: d ⇥ d matrix ⌃

Density p(x) =
1

(2⇡)d/2|⌃|1/2
exp

✓
�1

2
(x � µ)T⌃�1(x � µ)

◆

If we write S = ⌃�1 then S is a d ⇥ d matrix and

(x � µ)T⌃�1(x � µ) =
X

i,j

S

ij

(x
i

� µ
i

)(x
j

� µ
j

),

a quadratic function of x .

Binary classification with Gaussian generative model

• Estimate class probabilities ⇡1, ⇡2

• Fit a Gaussian to each class: P1 = N(µ1,⌃1), P2 = N(µ2,⌃2)

Given a new point x , predict class 1 if

⇡1P1(x) > ⇡2P2(x) , x

T

Mx + 2wT

x � ✓,

where:

M =
1

2
(⌃�1

2 � ⌃�1
1 )

w = ⌃�1
1 µ1 � ⌃�1

2 µ2

and ✓ is a threshold depending on the various parameters.

Linear or quadratic decision boundary.



Common covariance: ⌃1 = ⌃2 = ⌃

Linear decision boundary: choose class 1 if

x · ⌃�1(µ1 � µ2)| {z }
w

� ✓.

Example 1: Spherical Gaussians with ⌃ = I

d

and ⇡1 = ⇡2.

µ1 µ2

w

bisector of line
 joining means

Example 2: Again spherical, but now ⇡1 > ⇡2.

µ1 µ2

w



Example 3: Non-spherical.

µ1

µ2

µ1 � µ2

w = ��1(µ1 � µ2)

Classification rule: w · x � ✓

• Choose w as above

• Common practice: fit ✓ to minimize training or validation error

Di↵erent covariances: ⌃1 6= ⌃2

Quadratic boundary: choose class 1 if xTMx + 2wT

x � ✓, where:

M =
1

2
(⌃�1

2 � ⌃�1
1 )

w = ⌃�1
1 µ1 � ⌃�1

2 µ2

Example 1: ⌃1 = �2
1 Id and ⌃2 = �2

2 Id with �1 > �2

µ1 µ2



Example 2: Same thing in 1-d. X = R.

class 1

class 2

Example 3: A parabolic boundary.

µ1
µ2



Multiclass discriminant analysis

k classes: weights ⇡
j

, class-conditional densities P
j

= N(µ
j

,⌃
j

).

Each class has an associated quadratic function

f

j

(x) = log (⇡
j

P

j

(x))

To classify point x , pick argmax
j

f

j

(x).

If ⌃1 = · · · = ⌃
k

, the boundaries are linear.

Beyond Gaussians

The generative methodology:

• Fit a distribution to each class separately

• Use Bayes’ rule to classify new data

What distribution to use? Are Gaussians enough?



Exponential families of distributions

 It was the best of times, it was the 
worst of times, it was the age of 
wisdom, it was the age of foolishness, 
it was the epoch of belief, it was the 
epoch of incredulity, it was the 
season of Light, it was the season of 
Darkness, it was the spring of hope, 
it was the winter of despair, we had 
everything before us, we had nothing 
before us, we were all going direct to 
Heaven, we were all going direct the 
other way – in short, the period was 
so far like the present period, that 
some of its noisiest authorities 
insisted on its being received, for 
good or for evil, in the superlative 
degree of comparison only.

despair

evil

happiness

foolishness1

1

0

2

GAMMA BETA

POISSON CATEGORICAL

Multivariate distributions

We’ve described a variety of distributions for one-dimensional data.
What about higher dimensions?

1 Naive Bayes: Treat coordinates as independent.
For x = (x1, . . . , xd), fit separate models Pr

i

to each x

i

, and assume

Pr(x1, . . . , xd) = Pr1(x1)Pr2(x2) · · · Pr
d

(x
d

).

This assumption is typically inaccurate.

2 Multivariate Gaussian.
Model correlations between features: we’ve seen this in detail.

3 Graphical models.
Arbitrary dependencies between coordinates.



Handling text data
Bag-of-words: vectorial representation of text documents.

 It was the best of times, it was the 
worst of times, it was the age of 
wisdom, it was the age of foolishness, 
it was the epoch of belief, it was the 
epoch of incredulity, it was the 
season of Light, it was the season of 
Darkness, it was the spring of hope, 
it was the winter of despair, we had 
everything before us, we had nothing 
before us, we were all going direct to 
Heaven, we were all going direct the 
other way – in short, the period was 
so far like the present period, that 
some of its noisiest authorities 
insisted on its being received, for 
good or for evil, in the superlative 
degree of comparison only.

despair

evil

happiness

foolishness1

1

0

2

• Fix V = some vocabulary.

• Treat each document as a vector of length |V |:

x = (x1, x2, . . . , x|V |),

where x

i

= # of times the ith word appears in the document.

A standard distribution over such document-vectors x : the multinomial.

Multinomial naive Bayes

Multinomial distribution over a vocabulary V :

p = (p1, . . . , p|V |), such that p

i

� 0 and
X

i

p

i

= 1

Document x = (x1, . . . , x|V |) has probability / p

x1
1 p

x2
2 · · · px|V |

|V | .

For naive Bayes: one multinomial distribution per class.

• Class probabilities ⇡1, . . . , ⇡k

• Multinomials p(1) = (p11, . . . , p1|V |), . . . , p
(k) = (p

k1, . . . , p
k|V |)

Classify document x as

argmax
j

⇡
j

|V |Y

i=1

p

x

i

ji

.

(As always, take log to avoid underflow: linear classifier.)



Improving performance of multinomial naive Bayes

A variety of heuristics that are standard in text retrieval, such as:

1 Compensating for burstiness.
Problem: Once a word has appeared in a document, it has a much
higher chance of appearing again.

Solution: Instead of the number of occurrences f of a word, use
log(1 + f ).

2 Downweighting common words.
Problem: Common words can have a unduly large influence on
classification.

Solution: Weight each word w by inverse document frequency:

log
# docs

#(docs containing w)
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1. Consider the linear classifier w · x � ✓, where

w =

✓
�3
4

◆
and ✓ = 12.

Sketch the decision boundary in R2. Make sure to label precisely where the boundary intersects the
coordinate axes, and also indicate which side of the boundary is the positive side.

2. How many parameters are needed to specify a diagonal Gaussian in Rd?

3. Text classification using multinomial Naive Bayes.

(a) For this problem, you’ll be using the 20 Newsgroups data set. There are several versions of it on
the web. You should download “20news-bydate.tar.gz” from

http://qwone.com/~jason/20Newsgroups/

Unpack it and look through the directories at some of the files. Overall, there are roughly 19,000
documents, each from one of 20 newsgroups. The label of a document is the identity of its
newsgroup. The documents are divided into a training set and a test set.

(b) The same website has a processed version of the data, “20news-bydate-matlab.tgz”, that is par-
ticularly convenient to use. Download this and also the file “vocabulary.txt”. Look at the first
training document in the processed set and the corresponding original text document to under-
stand the relation between the two.

(c) The words in the documents constitute an overall vocabulary V of size 61188. Build a multinomial
Naive Bayes model using the training data. For each of the 20 classes j = 1, 2, . . . , 20, you must
have the following:

• ⇡j , the fraction of documents that belong to that class; and

• Pj , a probability distribution over V that models the documents of that class.

In order to fit Pj , imagine that all the documents of class j are strung together. For each word
w 2 V , let Pjw be the fraction of this concatenated document occupied by w. Well, almost: you
will need to do smoothing (just add one to the count of how often w occurs).

(d) Write a routine that uses this naive Bayes model to classify a new document. To avoid underflow,
work with logs rather than multiplying together probabilities.

(e) Evaluate the performance of your model on the test data. What error rate do you achieve?

(f) If you have the time and inclination: see if you can get a better-performing model.

• Split the training data into a smaller training set and a validation set. The split could be
80-20, for instance. You’ll use this training set to estimate parameters and the validation set
to decide between di↵erent options.

8-1
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• Think of 2-3 ways in which you might improve your earlier model. Examples include: (i)
replacing the frequency f of a word in a document by log(1 + f), (ii) removing stopwords;
(iii) reducing the size of the vocabulary; etc. Estimate a revised model for each of these, and
use the validation set to choose between them.

• Evaluate your final model on the test data. What error rate do you achieve?

4. Handwritten digit recognition using a Gaussian generative model. In class, we mentioned the MNIST
data set of handwritten digits. You can obtain it from:

http://yann.lecun.com/exdb/mnist/index.html

In this problem, you will build a classifier for this data, by modeling each class as a multivariate
(784-dimensional) Gaussian.

(a) Upon downloading the data, you should have two training files (one with images, one with labels)
and two test files. Unzip them.

In order to load the data into Python you will find the following code helpful:

http://cseweb.ucsd.edu/~dasgupta/dse210/loader.py

For instance, to load in the training data, you can use:

x,y = loadmnist(’train-images-idx3-ubyte’, ’train-labels-idx1-ubyte’)

This will set x to a 60000 ⇥ 784 array where each row corresponds to an image, and y to a
length-60000 array where each entry is a label (0-9). There is also a routine to display images:
use displaychar(x[0]) to show the first data point, for instance.

(b) Split the training set into two pieces – a training set of size 50000, and a separate validation set
of size 10000. Also load in the test data.

(c) Now fit a Gaussian generative model to the training data of 50000 points:

• Determine the class probabilities: what fraction ⇡0 of the training points are digit 0, for
instance? Call these values ⇡0, . . . ,⇡9.

• Fit a Gaussian to each digit, by finding the mean and the covariance of the corresponding
data points. Let the Gaussian for the jth digit be Pj = N(µj ,⌃j).

Using these two pieces of information, you can classify new images x using Bayes’ rule: simply
pick the digit j for which ⇡jPj(x) is largest.

(d) One last step is needed: it is important to smooth the covariance matrices, and the usual way to
do this is to add in cI, where c is some constant and I is the identity matrix. What value of c
is right? Use the validation set to help you choose. That is, choose the value of c for which the
resulting classifier makes the fewest mistakes on the validation set. What value of c did you get?

(e) Turn in an iPython notebook that includes:

• All your code.

• Error rate on the MNIST test set.

• Out of the misclassified test digits, pick five at random and display them. For each instance,
list the posterior probabilities Pr(y|x) of each of the ten classes.
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