Clustering

DSE 210

Clustering in R¢

Two common uses of clustering:

e Vector quantization
Find a finite set of representatives that provides good coverage of a
complex, possibly infinite, high-dimensional space.

e Finding meaningful structure in data
Finding salient grouping in data.



Widely-used clustering methods

©® K-means and its many variants
® EM for mixtures of Gaussians

© Agglomerative hierarchical clustering

The k-means optimization problem

e Input: Points x1,...,x, € RY; integer k
e Output: “Centers”, or representatives, ji1, ..., ux € RY

e Goal: Minimize average squared distance between points and their
nearest representatives:

n
cost(pir, k) = 3 min [ xi — py?
i=1

X The centers carve RY up into k
:* . convex regions: fuj’s.re.gion consists
. of points for which it is the closest
[ J
. center.




Lloyd’s k-means algorithm

The k-means problem is NP-hard to solve. The most popular heuristic is
called the “k-means algorithm"”.

e Initialize centers p1,..., [tk iIn some manner.

e Repeat until convergence:

e Assign each point to its closest center.
e Update each p; to the mean of the points assigned to it.

Each iteration reduces the cost = convergence to a local optimum.

Initializing the k-means algorithm

Typical practice: choose k data points at random as the initial centers.
Another common trick: start with extra centers, then prune later.

A particularly good initializer: k-means++
e Pick a data point x at random as the first center

e Let C = {x} (centers chosen so far)
e Repeat until desired number of centers is attained:
e Pick a data point x at random from the following distribution:

Pr(x)  dist(x, C)?,

where dist(x, C) = min,cc ||x — z||
e Add x to C



Representing images using k-means codewords

Given a collection of images, how to represent as fixed-length vectors?

patch of
fixed size

Look at all £ x £ patches in all images.

Run k-means on this entire collection to get k centers.

Now associate any image patch with its nearest center.

e Represent an image by a histogram over {1,2,..., k}.

Such data sets are truly enormous.

Streaming and online computation

Streaming computation: for data sets that are too large to fit in
memory.

e Make one pass (or maybe a few passes) through the data.

e On each pass:

e See data points one at a time, in order.
e Update models/parameters along the way.

e There is only enough space to store a tiny fraction of the data, or a
perhaps short summary.

Online computation: an even more lightweight setup, for data that is
continuously being collected.

e Initialize a model.

e Repeat forever:

e See a new data point.
e Update model if need be.



Example: sequential k-means

@ Set the centers 1, ..., ux to the first k data points
@ Set their countstony =nmp=---=n, =1

© Repeat, possibly foreover:

e Get next data point x
e |et uj be the center closest to x
e Update p; and nj:

nj;uj+x
L J7 d . — RN 1
Hj = n; 1 an nj—nj—l—

K-means: the good and the bad

The good:
e Fast and easy.

e Effective in quantization.

The bad:

e Geared towards data in which the clusters are spherical, and of
roughly the same radius.

Is there is a similarly-simple algorithm in which clusters of more general
shape are accommodated?



Mixtures of Gaussians

Idea: model each cluster by a Gaussian:
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Each of the k clusters is specified by:
e a Gaussian distribution P; = N(p;j, ;)
e a mixing weight 7;

Overall distribution over RY: a mixture of Gaussians

Pr(x) = m Pi(x) + - - - + 1 Pk(x)

The clustering task

Given data x1,...,x, € RY, find the maximum-likelihood mixture of
Gaussians: that is, find parameters

e 7m1,...,mk > 0 summing to one

® /'Lla"'a,ukeRd
° Zl,...,ZkERdXd

to maximize

Pr(data | m Py + - + 7k Px)

n k
= H ZWJPJ(X

i=1 \ j=1
k

1 —
1

where P; is the distribution of the jth cluster, N(u;, X;).



The EM algorithm

O Initialize w1,..., 7 and Py = N(p1,X1), ..., P = N(pk, k) in
some manner.
® Repeat until convergence:
e Assign each point x; fractionally between the k clusters:

. 7T'P'(X,')
w;; = Pr(cluster X)) = =21
Iy ( J | ) Z£ 7T£P£(Xi)
e Now update the mixing weights, means, and covariances:
1 n
T = ; Wij
i=1
1 n
o WiiXi
Hj n; ; ij
Y= AN wii(xi — i) (xi — -)T
I G\Xi = o )\Xi — [

Hierarchical clustering

Choosing the number of clusters (k) is difficult.

Often there is no single right answer, because of multiscale structure.

Hierarchical clustering avoids these problems.



Example: gene expression data
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e Start with each point in its own, singleton, cluster

e Repeat until there is just one cluster:

e Merge the two clusters with the closest pair of points

e Disregard singleton clusters



Linkage methods

e Start with each point in its own, singleton, cluster
e Repeat until there is just one cluster:
e Merge the two “closest” clusters

How to measure the distance between two clusters of points, C and C’?

e Single linkage

dist(C.C') = _min [lx— x|

e Complete linkage

dist(C, C") = max |x — X'
x€C,x'€

Average linkage

Three commonly-used variants:

@ Average pairwise distance between points in the two clusters
1
dist(C,C") = =@ 2o 2 Ix =
Cl-[C] = =2

@® Distance between cluster centers
dist(C, C') = ||mean(C) — mean(C’)||

©® Ward's method: the increase in k-means cost occasioned by merging
the two clusters

€l-1¢]

dlSt(C:7 C/) = m

Imean(C) — mean(C’)||?
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Worksheet 9 — Clustering

1. For this problem, we’ll be using the animals with attributes data set. Go to
http://attributes.kyb.tuebingen.mpg.de

and, under “Downloads”, choose the “base package” (the very first file in the list). Unzip it and look
over the various text files.

2. This is a small data set that has information about 50 animals. The animals are listed in classes.txt.
For each animal, the information consists of values for 85 features: does the animal have a tail, is it
slow, does it have tusks, etc. The details of the features are in predicates.txt. The full data consists
of a 50 x 85 matrix of real values, in predicate-matrix-continuous.txt. There is also a binarized
version of this data, in predicate-matrix-binary.txt.

3. Load the real-valued array, and also the animal names, into Python. Run k-means on the data (from
sklearn.cluster) and ask for k¥ = 10 clusters. For each cluster, list the animals in it. Does the
clustering make sense?

4. Now hierarchically cluster this data, using scipy.cluster.hierarchy.linkage. Choose Ward’s
method, and plot the resulting tree using the dendrogram method, setting the orientation parameter
to ‘right’ and labeling each leaf with the corresponding animal name.

You will run into a problem: the plot is too cramped because the default figure size is so small. To
make it larger, preface your code with the following:

from pylab import rcParams

rcParams[’figure.figsize’] = 5, 10

(or try a different size if this doesn’t seem quite right). Does the hierarchical clustering seem sensible
to you?

5. Turn in an iPython notebook with a transcript of all this experimentation.

9-1



Informative projections

DSE 210

Dimensionality reduction

Why reduce the number of features in a data set?
@ It reduces storage and computation time.
® High-dimensional data often has a lot of redundancy.

© Remove noisy or irrelevant features.

Example: are all the pixels in an image equally informative?

If we were to choose a few pixels to
discard, which would be the prime can-
didates?




Eliminating low variance coordinates

MNIST: what fraction of the total variance lies in the 100 (or 200, or
300) coordinates with lowest variance?
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The effect of correlation

Suppose we wanted just one feature for the following data.
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This is the direction of maximum variance.



Comparing projections
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Projection: formally

What is the projection of x € R in the direction u € R9?
Assume u is a unit vector (i.e. [[u]| = 1).

€T

Projection is

x-u=u-x=u'x= g upX;.

i=1




Examples

What is the projection of x = (2

3) along the following directions?

® The xg-axis?

® The direction of (_11)?

The best direction

Suppose we need to map our data x € R into just one dimension:
X+ u-x for some unit direction u € R?

What is the direction u of maximum variance?

Useful fact 1:
e Let X be the d x d covariance matrix of X.

e The variance of X in direction u (the variance of X - u) is:

u'Yu.



Best direction: example
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Suppose we need to map our data x € RY into just one dimension:

Xt u-X

for some unit direction u € R?

What is the direction u of maximum variance?

Useful fact 1:

e Let ¥ be the d x d covariance matrix of X.

e The variance of X in direction u is given by u” Xu.

Useful fact 2:

e u"Yu is maximized by setting u to the first eigenvector of ¥.

e The maximum value is the corresponding eigenvalue.



Best direction: example
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Projection onto this direction:
the top principal component of the data

Projection onto multiple directions

Projecting x € R? into the k-dimensional subspace defined by vectors
d
ui, ..., Uk e R9.

This is easiest when the u;'s are orthonormal:
e They have length one.
e They are at right angles to each other: u; - uj = 0 when i # j

The projection is a k-dimensional vector:

< up > T
< us >

(X U1, x-Upy.o. X Ug) = , X
< Ug > l

~
call this UT

U is the d x k matrix with columns uy, ..., u.



Projection onto multiple directions: example

E.g. project data in R* onto the first two coordinates.

(notice: orthonormal)

Take vectors u; = U, =

uy s\ (1.0 0 0
») ~\o 10 0

The projection of x € R* is UTx = <§1>
2

OO o
O O O

Write ur = (

A A
<
N

The best k-dimensional projection

Let > be the d x d covariance matrix of X.
In O(d®) time, we can compute its eigendecomposition, consisting of

e real eigenvalues \{ > \» > --- > Ay

e corresponding eigenvectors uy, ..., uy € RY that are orthonormal
(unit length and at right angles to each other)

Fact: Suppose we want to map data X € R to just k dimensions, while
capturing as much of the variance of X as possible. The best choice of
projection is:

x> (U X, Up - Xy .oy Uy X),

where u; are the eigenvectors described above.

This projection is called principal component analysis (PCA).



Example: MNIST

Contrast coordinate projections with PCA:
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Applying PCA to MNIST: examples

Reconstruct this original image from its
PCA projection to k dimensions.

k =200 k =150 k =100

202)2]2

How do we get these reconstructions?




Reconstruction from a 1-d projection
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Reconstruction from projection onto multiple
directions

Projecting into the k-dimensional subspace defined by orthonormal
ui, ..., ux € RY.

The projection of x is a k-dimensional vector:

u
u>

AN A
~

(X U1, X uUpy.o. X Ug) =

—x —

~

Uk

call this UT

AN

The reconstruction from this projection is:

(x - up)ug + (x - u)up + -+ (x - ug)ug = UUT x.



MNIST: image reconstruction

Reconstruct this original image x from its
PCA projection to k dimensions.

k =200 k =150 k =100

2§2]2]2

Reconstruction UUT x, where U's columns are top k eigenvectors of ¥.

Case study: personality assessment

What are the dimensions along which personalities differ?

e [exical hypothesis: most important personality characteristics have
become encoded in natural language.

e Allport and Odbert (1936): identified 4500 words describing
personality traits.

e Group these words into (approximate) synonyms, by manual

clustering.

E.g. Norman (1967):
Spirit Jolly, merry, witty, lively, peppy
Talkativeness Talkative, articulate, verbose, gossipy
Sociability Companionable, social, outgoing
Spontaneity Impulsive, carefree, playful, zany
Boisterousness Mischievous, rowdy, loud, prankish
Adventure Brave, venturous, fearless, reckless
Energy Active, assertive, dominant, energetic
Conceit Boastful, conceited, egotistical
Vanity Affected, vain, chic, dapper, jaunty
Indiscretion Nosey, snoopy, indiscreet, meddlesome
Sensuality Sexy, passionate, sensual, flirtatious

e Data collection: subjects whether these words describe them.



Personality assessment: the data

Matrix of data (1 = strongly disagree, 5 = strongly agree)

Q\S -QQO

D o & 3 %

I A Y

S ESFES
Personl1 |4 1 1 2 5 5
Person2 |1 4 4 5 2 1
Person3 |2 4 5 4 2 2

How to extract important directions?

e Treat each column as a data point, find tight clusters
e Treat each row as a data point, apply PCA

e Or factor analysis, independent component analysis, etc.

What would PCA accomplish?

E.g.: Suppose two traits (generosity, trust) are so highly correlated that
each person either answers “1" to both or “5" to both.

generosity

A single PCA dimension would entirely account for both traits.



Personality assessment: the data

Matrix of data (1 = strongly disagree, 5 = strongly agree)

S &

D o & S o«

ST 9O R & D
LSS
Personl1 |4 1 1 2 5 5§
Person2 |1 4 4 5 2 1
Person3 |2 4 5 4 2 2

Methodology: apply PCA to the rows of this matrix.

The “Big Five” taxonomy

Extraversion
—: quiet (-.83), reserved (-.80), shy (-.75), silent (-.71)
+: talkative (.85), assertive (.83), active (.82), energetic (.82)

Agreeableness
—: fault-finding (-.52), cold (-.48), unfriendly (-.45), quarrelsome (-.45)
+: sympathetic (.87), kind (.85), appreciative (.85), affectionate (.84)

Conscientousness
—: careless (-.58), disorderly (-.53), frivolous (-.50), irresponsible (-.49)
+: organized (.80), thorough (.80), efficient (.78), responsible (.73)

Neuroticism
—: stable (-.39), calm (-.35), contented (-.21)
+: tense (.73), anxious (.72), nervous (.72), moody (.71)

Openness
—: commonplace (-.74), narrow (-.73), simple (-.67), shallow (-.55)
+: imaginative (.76), intelligent (.72), original (.73), insightful (.68)



Singular value decomposition
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Moving between coordinate systems

U9 uy
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The linear function defined by a matrix

e Any matrix M defines a linear function, x — Mx.
If M is a d x d matrix, this maps RY to RY.

e This function is easy to understand when M is diagonal:

2 0 0 X1 2X1

0 -1 0 X2 = —X2

0 0 10 X3 ].OX3
~~ 7 N—— S———
M X Mx

In this case, M simply scales each coordinate separately.

e General symmetric matrices also just scale coordinates separately...
but in a different coordinate system!

Eigenvector and eigenvalue: definition

Let M be a d x d matrix. We say u € R? is an eigenvector of M if
Mu = Au

for some scaling constant A\. This X is the eigenvalue associated with u.

Key point: M maps eigenvector u onto the same direction.



Question: What are the eigenvectors and eigenvalues of:

2 0 0
M=10 -1 0]°7
0 0 10

Eigenvectors of a real symmetric matrix

Fact: Let M be any real symmetric d x d matrix. Then M has

e d eigenvalues Aq,..., Ay
e corresponding eigenvectors uy, ..., uy € R? that are orthonormal
Can think of uq,..., uy as the axes of the natural coordinate

system for M.



Example

M = 12 has eigenvectors _ 11 _ 1 /-1
N —2 1 g ul_\/§ 1 , Uy = 5 1

@ Are these orthonormal?

® What are the corresponding eigenvalues?

Spectral decomposition

Fact: Let M be any real symmetric d x d matrix. Then M has
orthonormal eigenvectors uy, ..., ugy € RY and corresponding eigenvalues
Alyeeey Ad-

Spectral decomposition: Another way to write M:

AM 0 - 0 ¢ U
T T T 0O X -+ 0 ¢ U
M= |u w - uq ) . . .
VA R | W
N~ N '\ 1
U: columns are eigenvectors A eigenvalugg on diagonal lﬁ—

Thus Mx = UANUT x:
o UT rewrites x in the {u;} coordinate system
e A is a simple coordinate scaling in that basis

e (J sends the scaled vector back into the usual coordinate basis



Apply to the matrix we saw earlier: M = (

e Eigenvectors u; =

1

V2

(). -

e Eigenvalues \; = —1, A, = 3.

1

V2

1 =2
-2 1

)

)

U2

A

U1

» C1



Principal component analysis revisited

s Data vectors X € R?
Us Uy e Covariance matrix X is d X d, symmetric.

o) e e Eigenvalues \1 > Xy > --- > )y
Eigenvectors uy, ..., uy.

< »c1  ® lq,...,Uy: another basis for data.
[}
/'/ e Variance of X in direction u; is ;.

e Projection to k dimensions:
X (XU, X ug).

What is the covariance of the projected data?

Singular value decomposition (SVD)

For symmetric matrices, such as covariance matrices, we have seen:
e Results about existence of eigenvalues and eigenvectors
e The fact that the eigenvectors form an alternative basis
e The resulting spectral decomposition, which is used in PCA
But what about arbitrary matrices M € RP*97?

Any p x g matrix (say p < g) has a singular value decomposition:

T T o1 - 0 < %1 >
M=|wu - u Lo
J/ l 0 “ .. 0‘p < VP \
p X p matrix U p X p matrix A p X g matrix V7
® uq,...,Up are orthonormal vectors in R”
® vi,...,Vp are orthonormal vectors in RY

® 01 > 09 > -+ > 0p are singular values



Matrix approximation
We can factor any p x g matrix as M = UW

\l lp) \O ‘7.p
Al T /(—01.v1—>
(VA C—

p X p matrix U p X g matrix WT

~

A

Vi

PN
_c<
~

lp/ \% UP'VP -

A concise approximation to M: just take the first k columns of U and
the first k rows of W7, for k < p:

R T T S o1vp —
M .

I
i~
=
c
x-

l 1. (L7 ——

N kxgq

Example: topic modeling

Blei (2012):
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Latent semantic indexing (LSI)

Given a large corpus of n documents:
e Fix a vocabulary, say of V words.

e Bag-of-words representation for documents: each document
becomes a vector of length V/, with one coordinate per word.

e The corpus is an n X V matrix, one row per document.

¢ « &
§FES ¢
Docl1 |4 1 1 0 2
Doc2 |0 0 3 1 0
Doc3|0 1 3 0 O

Let's find a concise approximation to this matrix M.

Latent semantic indexing, cont’'d

Use SVD to get an approximation to M: for small k,

+—docl — ¢ 01 >
+——doc2 — ¢ 0 > ¢ v, >
——doc3 — | ~ |+ 03 > ;
: : ¢ v, >
+——docn— - 0, s ] S i %V raatrix U g
nxV :nratrix M n X k :nratrix (C]

Think of this as a topic model with k topics.
e V; is a vector of length V describing topic j: coefficient W, is large
if word w appears often in that topic.

e Each document is a combination of topics: 8 is the weight of topic
J in document 1.

Document i originally represented by ith row of M, a vector in RY.
Can instead use #; € R*, a more concise “semantic’ representation.



The rank of a matrix

Suppose we want to approximate a matrix M by a simpler matrix M.
What is a suitable notion of “simple”?

e Let's say M and M are p X q, where p < q.
o Treat each row of M as a data point in RY.

e We can think of the data as “simple” if it actually lies in a
low-dimensional subspace.

e If the rows lie in k-dimensional subspace, we say that M has rank k.

The rank of a matrix is the number of linearly independent rows.
Low-rank approximation: given M € RP*9 and an integer k, find the
matrix M € RP*9 that is the best rank-k approximation to M.

That is, find M so that
e M has rank < k

e The approximation error »_, .(M; — MU)z is minimized.

We can get M directly from the singular value decomposition of M.

Low-rank approximation

Recall: Singular value decomposition of p x g matrix M (with p < q):

T T o1 - 0 < %1 >
M=|wu - u Do
l l 0 - op $ Vp >

® uj,...,Up is an orthonormal basis of RP
® vi,...,Vq is an orthonormal basis of RY

® 01 > .-+ > 0, are singular values

The best rank-k approximation to M, for any k < p, is then

. T T o1 -+ 0 < %1 >
M= \|u - ug
l l 0 - ok < Vi >




Example: Collaborative filtering
Details and images from Koren, Bell, Volinksy (2009).

Recommender systems: matching customers with products.
e Given: data on prior purchases/interests of users
e Recommend: further products of interest

Prototypical example: Netflix.

A successful approach: collaborative filtering.

e Model dependencies between different products, and between
different users.

e Can give reasonable recommendations to a relatively new user.
Two strategies for collaborative filtering:

e Neighborhood methods

e |atent factor methods

Neighborhood methods




Latent factor methods
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The matrix factorization approach

User ratings are assembled in a large matrix M:

“ & X

Lo fEs

s & e &T
FLFFS
Userl1 |5 5 2 0 O
User2 |0 0 3 4 5
User3|0 0 5 0 O

e Not rated = 0, otherwise scores 1-5.
e For n users and p movies, this has size n x p.

e Most of the entries are unavailable, and we'd like to predict these.

Idea: Find the best low-rank approximation of M, and use it to fill in the
missing entries.



User and movie factors

Best rank-k approximation is of the foom M ~ UWT:

<—— user 1 —

< up >
< user 2 — ¢ Uy > T T T
——user3 — | ~ |+ u3 > Wi owe e W,
—— user n — ¢ Up 5 k% p trie W T
n X p matrix M n X k matrix U

Thus user i's rating of movie j is approximated as
M,’j ~ Uuj- W;j

This “latent” representation embeds users and movies within the same
k-dimensional space:
e Represent ith user by u; € R¥

e Represent jth movie by w; € R¥

Top two Netflix factors
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Worksheet 10 — PCA and SVD

1. Is the following set of vectors an orthonormal basis of R3? Explain why or why not.

3 4 0
4],1-3],(0
0 0 1

2. The following four figures show different 2-dimensional data sets. In each case, make a rough sketch
of an ellipsoidal contour of the covariance matrix and indicate the directions of the first and second
eigenvectors (mark which is which).
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3. Let uy,us € R be two vectors with ||uz|| = ||uz| = 1 and u; - uz = 0. Define

T 1
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DSE 210 Worksheet 10 — PCA and SVD Winter 2018

(a) What are the dimensions of each of the following?
o U
o UT
o UUT
. ulu{

(b) What are the differences, if any, between the following four mappings?

x— (u1 - x,ug - T)

x = (ug - 2)ur + (ug - x)ug
v UTx

z— UUTy

4. Recall the animals with attributes data set from Worksheet 9, which has information about 50 animals,
each represented as a vector in R8®.

We would like to visualize these animals in 2-d. Show how to do this with a PCA projection from
R® to R2. Show the position of each animal, and label them with their names. (Remember from
Worksheet 9 how to enlarge the figure. This time you might want to ask for size 10,10.)

Does this embedding seem sensible to you?

5. In lecture, we looked at the effect of projecting the MNIST data set of handwritten digits to lower-
dimension: from 784 to 200, 150, 100, 50 dimensions. We found that the reconstruction error was fairly
low for 150-dimensional projections, but noticeable for 50-dimensional projections.

We now investigate these issues further.

(a) Let X € R have covariance matrix . Suppose the eigenvalues of ¥ are \; > Ay > -+ > \g, and
suppose the corresponding eigenvectors are wui,us,...,uq. LThen it can be shown that X has an
overall variance of \; + --- + Ay, and that when X is projected onto the top k eigenvectors, the
residual variance (the information that gets lost) is Agy1+- - -+ Ag. Therefore, for this projection,
the fraction of lost information, intuitively speaking, is

A1+ -+ A
Fk)=2k1 T T Ad
(k) AL+ Ag

Compute these fractions for the MNIST data set, for £ = 200, 150, 100, 50, 25.

(b) Suppose we are allowed a different projection for each digit. We would then expect that we can
project to an even lower dimension while maintaining roughly the same amount of information.
Test whether this is true as follows: for each digit 7 =0,1,2,...,9,

e Obtain the PCA projection to k dimensions, for & = 200, 150, 100, 50, 25.
e Compute the fraction Fj(k), for each such value of k.

e Pick a random instance of the digit. Show the original digit as well as its reconstruction
at each of these five values of k. (Note: the original images have pixel values in the range
0-255, but this might not be true of the reconstructions; therefore, you may need to clip the
reconstructed pixels to lie within this range before displaying the image.)

Show all the fractions Fj(k) in a table. Which digit seems to be the most amenable to low-
dimensional projection?
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