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Clustering in Rd

Two common uses of clustering:

• Vector quantization
Find a finite set of representatives that provides good coverage of a
complex, possibly infinite, high-dimensional space.

• Finding meaningful structure in data
Finding salient grouping in data.



Widely-used clustering methods

1 K -means and its many variants

2 EM for mixtures of Gaussians

3 Agglomerative hierarchical clustering

The k-means optimization problem

• Input: Points x1, . . . , xn 2 Rd ; integer k

• Output: “Centers”, or representatives, µ1, . . . , µk

2 Rd

• Goal: Minimize average squared distance between points and their
nearest representatives:

cost(µ1, . . . , µk

) =
nX

i=1

min
j

kx
i

� µ
j

k2

The centers carve Rd up into k

convex regions: µ
j

’s region consists
of points for which it is the closest
center.



Lloyd’s k-means algorithm

The k-means problem is NP-hard to solve. The most popular heuristic is
called the “k-means algorithm”.

• Initialize centers µ1, . . . , µk

in some manner.

• Repeat until convergence:
•

Assign each point to its closest center.

•
Update each µ

j

to the mean of the points assigned to it.

Each iteration reduces the cost ) convergence to a local optimum.

Initializing the k-means algorithm

Typical practice: choose k data points at random as the initial centers.

Another common trick: start with extra centers, then prune later.

A particularly good initializer: k-means++

• Pick a data point x at random as the first center

• Let C = {x} (centers chosen so far)

• Repeat until desired number of centers is attained:
•

Pick a data point x at random from the following distribution:

Pr(x) / dist(x ,C)

2,

where dist(x ,C) = min

z2C

kx � zk
•

Add x to C



Representing images using k-means codewords
Given a collection of images, how to represent as fixed-length vectors?

patch of 
fixed size

• Look at all `⇥ ` patches in all images.

• Run k-means on this entire collection to get k centers.

• Now associate any image patch with its nearest center.

• Represent an image by a histogram over {1, 2, . . . , k}.
Such data sets are truly enormous.

Streaming and online computation

Streaming computation: for data sets that are too large to fit in
memory.

• Make one pass (or maybe a few passes) through the data.

• On each pass:
•

See data points one at a time, in order.

•
Update models/parameters along the way.

• There is only enough space to store a tiny fraction of the data, or a
perhaps short summary.

Online computation: an even more lightweight setup, for data that is
continuously being collected.

• Initialize a model.

• Repeat forever:
•

See a new data point.

•
Update model if need be.



Example: sequential k-means

1 Set the centers µ1, . . . , µk

to the first k data points

2 Set their counts to n1 = n2 = · · · = n

k

= 1

3 Repeat, possibly foreover:
•

Get next data point x

•
Let µ

j

be the center closest to x

•
Update µ

j

and n

j

:

µ
j

=

n

j

µ
j

+ x

n

j

+ 1

and n

j

= n

j

+ 1

K -means: the good and the bad

The good:

• Fast and easy.

• E↵ective in quantization.

The bad:

• Geared towards data in which the clusters are spherical, and of
roughly the same radius.

Is there is a similarly-simple algorithm in which clusters of more general
shape are accommodated?



Mixtures of Gaussians
Idea: model each cluster by a Gaussian:

20%

20%

40%

20%

Each of the k clusters is specified by:

• a Gaussian distribution P

j

= N(µ
j

,⌃
j

)

• a mixing weight ⇡
j

Overall distribution over Rd : a mixture of Gaussians

Pr(x) = ⇡1P1(x) + · · ·+ ⇡
k

P

k

(x)

The clustering task

Given data x1, . . . , xn 2 Rd , find the maximum-likelihood mixture of
Gaussians: that is, find parameters

• ⇡1, . . . ,⇡k

� 0 summing to one

• µ1, . . . , µk

2 Rd

• ⌃1, . . . ,⌃k

2 Rd⇥d

to maximize
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where P

j

is the distribution of the jth cluster, N(µ
j

,⌃
j

).



The EM algorithm

1 Initialize ⇡1, . . . ,⇡k

and P1 = N(µ1,⌃1), . . . ,Pk

= N(µ
k

,⌃
k

) in
some manner.

2 Repeat until convergence:
•

Assign each point x

i

fractionally between the k clusters:

w

ij

= Pr(cluster j | x
i

) =

⇡
j

P

j

(x

i

)P
` ⇡`P`(xi )

•
Now update the mixing weights, means, and covariances:
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Hierarchical clustering

Choosing the number of clusters (k) is di�cult.

Often there is no single right answer, because of multiscale structure.

Hierarchical clustering avoids these problems.



Example: gene expression data

The single linkage algorithm

• Start with each point in its own, singleton, cluster

• Repeat until there is just one cluster:
•

Merge the two clusters with the closest pair of points

• Disregard singleton clusters



Linkage methods
• Start with each point in its own, singleton, cluster
• Repeat until there is just one cluster:

•
Merge the two “closest” clusters

How to measure the distance between two clusters of points, C and C

0?

• Single linkage

dist(C ,C 0) = min
x2C ,x02C

0
kx � x

0k

• Complete linkage

dist(C ,C 0) = max
x2C ,x02C

0
kx � x

0k

Average linkage

Three commonly-used variants:

1 Average pairwise distance between points in the two clusters

dist(C ,C 0) =
1

|C | · |C 0|
X

x2C

X

x

02C

0

kx � x

0k

2 Distance between cluster centers

dist(C ,C 0) = kmean(C )�mean(C 0)k

3 Ward’s method: the increase in k-means cost occasioned by merging
the two clusters

dist(C ,C 0) =
|C | · |C 0|
|C |+ |C 0|kmean(C )�mean(C 0)k2



DSE 210: Probability and statistics Winter 2018

Worksheet 9 — Clustering

1. For this problem, we’ll be using the animals with attributes data set. Go to

http://attributes.kyb.tuebingen.mpg.de

and, under “Downloads”, choose the “base package” (the very first file in the list). Unzip it and look

over the various text files.

2. This is a small data set that has information about 50 animals. The animals are listed in classes.txt.

For each animal, the information consists of values for 85 features: does the animal have a tail, is it

slow, does it have tusks, etc. The details of the features are in predicates.txt. The full data consists

of a 50 ⇥ 85 matrix of real values, in predicate-matrix-continuous.txt. There is also a binarized

version of this data, in predicate-matrix-binary.txt.

3. Load the real-valued array, and also the animal names, into Python. Run k-means on the data (from

sklearn.cluster) and ask for k = 10 clusters. For each cluster, list the animals in it. Does the

clustering make sense?

4. Now hierarchically cluster this data, using scipy.cluster.hierarchy.linkage. Choose Ward’s

method, and plot the resulting tree using the dendrogram method, setting the orientation parameter

to ‘right’ and labeling each leaf with the corresponding animal name.

You will run into a problem: the plot is too cramped because the default figure size is so small. To

make it larger, preface your code with the following:

from pylab import rcParams

rcParams[’figure.figsize’] = 5, 10

(or try a di↵erent size if this doesn’t seem quite right). Does the hierarchical clustering seem sensible

to you?

5. Turn in an iPython notebook with a transcript of all this experimentation.

9-1



Informative projections

DSE 210

Dimensionality reduction

Why reduce the number of features in a data set?

1 It reduces storage and computation time.

2 High-dimensional data often has a lot of redundancy.

3 Remove noisy or irrelevant features.

Example: are all the pixels in an image equally informative?

If we were to choose a few pixels to
discard, which would be the prime can-
didates?



Eliminating low variance coordinates

MNIST: what fraction of the total variance lies in the 100 (or 200, or
300) coordinates with lowest variance?

The e↵ect of correlation

Suppose we wanted just one feature for the following data.

This is the direction of maximum variance.



Comparing projections

Projection: formally

What is the projection of x 2 Rd in the direction u 2 Rd?
Assume u is a unit vector (i.e. kuk = 1).

x · u

u

x
Projection is

x · u = u · x = uT x =
d
X

i=1

uixi .



Examples

What is the projection of x =

✓

2
3

◆

along the following directions?

1 The x1-axis?

2 The direction of

✓

1
�1

◆

?

The best direction

Suppose we need to map our data x 2 Rd into just one dimension:

x 7! u · x for some unit direction u 2 Rd

What is the direction u of maximum variance?

Useful fact 1:

• Let ⌃ be the d ⇥ d covariance matrix of X .

• The variance of X in direction u (the variance of X · u) is:

uT⌃u.



Best direction: example

Here covariance matrix ⌃ =

✓

1 0.85
0.85 1

◆

The best direction

Suppose we need to map our data x 2 Rd into just one dimension:

x 7! u · x for some unit direction u 2 Rd

What is the direction u of maximum variance?

Useful fact 1:

• Let ⌃ be the d ⇥ d covariance matrix of X .

• The variance of X in direction u is given by uT⌃u.

Useful fact 2:

• uT⌃u is maximized by setting u to the first eigenvector of ⌃.

• The maximum value is the corresponding eigenvalue.



Best direction: example

Direction:
first eigenvector of the
2⇥ 2 covariance matrix of
the data.

Projection onto this direction:
the top principal component of the data

Projection onto multiple directions

Projecting x 2 Rd into the k-dimensional subspace defined by vectors
u1, . . . , uk 2 Rd .

This is easiest when the ui ’s are orthonormal:

• They have length one.

• They are at right angles to each other: ui · uj = 0 when i 6= j

The projection is a k-dimensional vector:

(x · u1, x · u2, . . . , x · uk) =

0

B

B

B

@

 ����� u1 �����!
 ����� u2 �����!

...
 ����� uk �����!

1

C

C

C

A

| {z }

call this UT

0

B

B

@

x

?

?

x
?

?

y

1

C

C

A

U is the d ⇥ k matrix with columns u1, . . . , uk .



Projection onto multiple directions: example

E.g. project data in R4 onto the first two coordinates.

Take vectors u1 =

0

B

B

@

1
0
0
0

1

C

C

A

, u2 =

0

B

B

@

0
1
0
0

1

C

C

A

(notice: orthonormal)

Write UT =

✓

 ����� u1 �����!
 ����� u2 �����!

◆

=

✓

1 0 0 0
0 1 0 0

◆

The projection of x 2 R4 is UT x =

✓

x1
x2

◆

The best k-dimensional projection

Let ⌃ be the d ⇥ d covariance matrix of X .
In O(d3) time, we can compute its eigendecomposition, consisting of

• real eigenvalues �1 � �2 � · · · � �d

• corresponding eigenvectors u1, . . . , ud 2 Rd that are orthonormal
(unit length and at right angles to each other)

Fact: Suppose we want to map data X 2 Rd to just k dimensions, while
capturing as much of the variance of X as possible. The best choice of
projection is:

x 7! (u1 · x , u2 · x , . . . , uk · x),

where ui are the eigenvectors described above.

This projection is called principal component analysis (PCA).



Example: MNIST

Contrast coordinate projections with PCA:

Applying PCA to MNIST: examples

Reconstruct this original image from its
PCA projection to k dimensions.

k = 200 k = 150 k = 100 k = 50

How do we get these reconstructions?



Reconstruction from a 1-d projection

Projection onto R: Reconstruction in R2:

Reconstruction from projection onto multiple
directions

Projecting into the k-dimensional subspace defined by orthonormal
u1, . . . , uk 2 Rd .

The projection of x is a k-dimensional vector:

(x · u1, x · u2, . . . , x · uk) =

0

B

B

B

@

 ����� u1 �����!
 ����� u2 �����!

...
 ����� uk �����!

1

C

C

C

A

| {z }

call this UT
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The reconstruction from this projection is:

(x · u1)u1 + (x · u2)u2 + · · · + (x · uk)uk = UUT x .



MNIST: image reconstruction

Reconstruct this original image x from its
PCA projection to k dimensions.

k = 200 k = 150 k = 100 k = 50

Reconstruction UUT x , where U’s columns are top k eigenvectors of ⌃.

Case study: personality assessment

What are the dimensions along which personalities di↵er?

• Lexical hypothesis: most important personality characteristics have
become encoded in natural language.

• Allport and Odbert (1936): identified 4500 words describing
personality traits.

• Group these words into (approximate) synonyms, by manual
clustering.
E.g. Norman (1967):

1218 LEWIS R. GOLDBERG 

Table 1 
The 75 Categories in the Norman Taxonomy of 1,431 Trait-Descriptive Adjectives 

No. 
Factor pole/category Examples terms 

Reliabi l i ty  

a 

I+ 
Spirit Jolly, merry, witty, lively, peppy 26 
Talkativeness Talkative, articulate, verbose, gossipy 23 

Sociability Companionable, social, outgoing 9 
Spontaneity Impulsive, carefree, playful, zany 28 
Boisterousness Mischievous, rowdy, loud, prankish 11 
Adventure Brave, venturous, fearless, reckless 44 
Energy Active, assertive, dominant, energetic 36 
Conceit Boastful, conceited, egotistical 13 
Vanity Affected, vain, chic, dapper, jaunty 5 
Indiscretion Nosey, snoopy, indiscreet, meddlesome 6 
Sensuality Sexy, passionate, sensual, flirtatious 12 

I -  
Lethargy Reserved, lethargic, vigorless, apathetic 19 
Aloofness Cool, aloof, distant, unsocial, withdrawn 26 
Silence Quiet, secretive, untalkative, indirect 22 
Modesty Humble, modest, bashful, meek, shy 18 
Pessimism Joyless, solemn, sober, morose, moody 19 
Unfriendliness Tactless, thoughtless, unfriendly 20 

II+ 
Trust Trustful, unsuspicious, unenvious 20 
Amiability Democratic, friendly, genial, cheerful 29 
Generosity Generous, charitable, indulgent, lenient 18 
Agreeableness Conciliatory, cooperative, agreeable 17 
Tolerance Tolerant, reasonable, impartial, unbiased 19 
Courtesy Patient, moderate, tactful, polite, civil 17 
Altruism Kind, loyal, unselfish, helpful, sensitive 29 
Warmth Affectionate, warm, tender, sentimental 18 
Honesty Moral, honest, just, principled 16 

I I -  
Vindictiveness Sadistic, vengeful, cruel, malicious 13 
Ill humor Bitter, testy, crabby, sour, surly 16 
Criticism Harsh, severe, strict, critical, bossy 33 
Disdain Derogatory, caustic, sarcastic, catty 16 
Antagonism Negative, contrary, argumentative I l 
Aggressiveness Belligerent, abrasive, unruly, aggressive 21 
Dogmatism Biased, opinionated, stubborn, inflexible 49 
Temper Irritable, explosive, wild, short-tempered 29 
Distrust Jealous, mistrustful, suspicious 8 
Greed Stingy, selfish, ungenerous, envious 18 
Dishonesty Scheming, sly, wily, insincere, devious 29 

III+ 
Industry Persistent, ambitious, organized, thorough 43 
Order Orderly, prim, tidy 3 
Self-discipline Discreet, controlled, serious, earnest 17 
Evangelism Crusading, zealous, moralistic, prudish 13 
Consistency Predictable, rigid, conventional, rational 27 
Grace Courtly, dignified, genteel, suave 8 
Reliability Conscientious, dependable, prompt, punctual 11 
Sophistication Blas6, urbane, cultured, refined 16 
Formality Formal, pompous, smug, proud 13 
Foresight Aimful, calculating, farseeing, progressive 17 
Religiosity Mystical, devout, pious, spiritual 13 
Maturity Mature 1 
Passionlessness Coy, demure, chaste, unvoluptuous 4 
Thrift Economical, frugal, thrifty, unextravagant 4 

I I I -  
Negligence Messy, forgetful, lazy, careless 51 
Inconsistency Changeable, erratic, fickle, absent-minded 17 
Rebelliousness Impolite, impudent, rude, cynical 22 
Irreverence Nonreligious, informal, profane 9 
Provinciality Awkward, unrefined, earthy, practical 27 
Intemperance Thriftless, excessive, self-indulgent 13 
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• Data collection: subjects whether these words describe them.



Personality assessment: the data

Matrix of data (1 = strongly disagree, 5 = strongly agree)

sh
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g

qu
ie
t

Person 1 4 1 1 2 5 5
Person 2 1 4 4 5 2 1
Person 3 2 4 5 4 2 2

...

How to extract important directions?

• Treat each column as a data point, find tight clusters

• Treat each row as a data point, apply PCA

• Or factor analysis, independent component analysis, etc.

What would PCA accomplish?

E.g.: Suppose two traits (generosity, trust) are so highly correlated that
each person either answers “1” to both or “5” to both.

1

5

1

5
generosity

trust

A single PCA dimension would entirely account for both traits.



Personality assessment: the data

Matrix of data (1 = strongly disagree, 5 = strongly agree)

sh
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g

qu
ie
t

Person 1 4 1 1 2 5 5
Person 2 1 4 4 5 2 1
Person 3 2 4 5 4 2 2

...

Methodology: apply PCA to the rows of this matrix.

The “Big Five” taxonomy

Extraversion
�: quiet (-.83), reserved (-.80), shy (-.75), silent (-.71)

+: talkative (.85), assertive (.83), active (.82), energetic (.82)

Agreeableness
�: fault-finding (-.52), cold (-.48), unfriendly (-.45), quarrelsome (-.45)

+: sympathetic (.87), kind (.85), appreciative (.85), a↵ectionate (.84)

Conscientousness
�: careless (-.58), disorderly (-.53), frivolous (-.50), irresponsible (-.49)

+: organized (.80), thorough (.80), e�cient (.78), responsible (.73)

Neuroticism
�: stable (-.39), calm (-.35), contented (-.21)

+: tense (.73), anxious (.72), nervous (.72), moody (.71)

Openness
�: commonplace (-.74), narrow (-.73), simple (-.67), shallow (-.55)

+: imaginative (.76), intelligent (.72), original (.73), insightful (.68)



Singular value decomposition
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Moving between coordinate systems

e1

e2

u1u2



The linear function defined by a matrix

•
Any matrix M defines a linear function, x 7! Mx .

If M is a d ⇥ d matrix, this maps Rd

to Rd

.

•
This function is easy to understand when M is diagonal:

0

@

2 0 0

0 �1 0

0 0 10

1

A

| {z }

M

0

@

x

1

x

2

x

3

1

A

| {z }

x

=

0

@

2x

1

�x

2

10x

3

1

A

| {z }

Mx

In this case, M simply scales each coordinate separately.

•
General symmetric matrices also just scale coordinates separately...

but in a di↵erent coordinate system!

Eigenvector and eigenvalue: definition

Let M be a d ⇥ d matrix. We say u 2 Rd

is an eigenvector of M if

Mu = �u

for some scaling constant �. This � is the eigenvalue associated with u.

Key point: M maps eigenvector u onto the same direction.



Question: What are the eigenvectors and eigenvalues of:

M =

0

@

2 0 0

0 �1 0

0 0 10

1

A

?

Eigenvectors of a real symmetric matrix

Fact: Let M be any real symmetric d ⇥ d matrix. Then M has

•
d eigenvalues �

1

, . . . , �
d

•
corresponding eigenvectors u

1

, . . . , u
d

2 Rd

that are orthonormal

Can think of u

1

, . . . , u
d

as the axes of the natural coordinate

system for M.



Example

M =

✓

1 �2

�2 1

◆

has eigenvectors u

1

=

1p
2

✓

1

1

◆

, u

2

=

1p
2

✓

�1

1

◆

1 Are these orthonormal?

2 What are the corresponding eigenvalues?

Spectral decomposition

Fact: Let M be any real symmetric d ⇥ d matrix. Then M has

orthonormal eigenvectors u

1

, . . . , u
d

2 Rd

and corresponding eigenvalues

�
1

, . . . , �
d

.

Spectral decomposition: Another way to write M:

M =
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U: columns are eigenvectors
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⇤: eigenvalues on diagonal
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U

T

Thus Mx = U⇤U

T

x :

•
U

T

rewrites x in the {u
i

} coordinate system

•
⇤ is a simple coordinate scaling in that basis

•
U sends the scaled vector back into the usual coordinate basis



Apply to the matrix we saw earlier: M =

✓

1 �2

�2 1

◆

•
Eigenvectors u
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•
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= �1, �
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Principal component analysis revisited

e1

e2

u1u2

Data vectors X 2 Rd

•
Covariance matrix ⌃ is d ⇥ d , symmetric.

•
Eigenvalues �

1

� �
2

� · · · � �
d

Eigenvectors u

1

, . . . , u
d

.

•
u

1

, . . . , u
d

: another basis for data.

•
Variance of X in direction u

i

is �
i

.

•
Projection to k dimensions:

x 7! (x · u
1

, . . . , x · u
k

).

What is the covariance of the projected data?

Singular value decomposition (SVD)

For symmetric matrices, such as covariance matrices, we have seen:

•
Results about existence of eigenvalues and eigenvectors

•
The fact that the eigenvectors form an alternative basis

•
The resulting spectral decomposition, which is used in PCA

But what about arbitrary matrices M 2 Rp⇥q

?

Any p ⇥ q matrix (say p  q) has a singular value decomposition:
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Matrix approximation

We can factor any p ⇥ q matrix as M = UW

T
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A concise approximation to M: just take the first k columns of U and

the first k rows of W

T

, for k < p:
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Example: topic modeling
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review articles

time. (See, for example, Figure 3 for 
topics found by analyzing the Yale Law 
Journal.) Topic modeling algorithms 
do not require any prior annotations or 
labeling of the documents—the topics 
emerge from the analysis of the origi-
nal texts. Topic modeling enables us 
to organize and summarize electronic 
archives at a scale that would be impos-
sible by human annotation.

Latent Dirichlet Allocation
We first describe the basic ideas behind 
latent Dirichlet allocation (LDA), which 
is the simplest topic model.8 The intu-
ition behind LDA is that documents 
exhibit multiple topics. For example, 
consider the article in Figure 1. This 
article, entitled “Seeking Life’s Bare 
(Genetic) Necessities,” is about using 
data analysis to determine the number 
of genes an organism needs to survive 
(in an evolutionary sense).

By hand, we have highlighted differ-
ent words that are used in the article. 
Words about data analysis, such as 
“computer” and “prediction,” are high-
lighted in blue; words about evolutionary 
biology, such as “life” and “organism,” 
are highlighted in pink; words about 
genetics, such as “sequenced” and 

“genes,” are highlighted in yellow. If we 
took the time to highlight every word in 
the article, you would see that this arti-
cle blends genetics, data analysis, and 
evolutionary biology in different pro-
portions. (We exclude words, such as 
“and” “but” or “if,” which contain little 
topical content.) Furthermore, know-
ing that this article blends those topics 
would help you situate it in a collection 
of scientific articles.

LDA is a statistical model of docu-
ment collections that tries to capture 
this intuition. It is most easily described 
by its generative process, the imaginary 
random process by which the model 
assumes the documents arose. (The 
interpretation of LDA as a probabilistic 
model is fleshed out later.)

We formally define a topic to be a 
distribution over a fixed vocabulary. For 
example, the genetics topic has words 
about genetics with high probability 
and the evolutionary biology topic has 
words about evolutionary biology with 
high probability. We assume that these 
topics are specified before any data 
has been generated.a Now for each 

a Technically, the model assumes that the top-
ics are generated first, before the documents.

document in the collection, we gener-
ate the words in a two-stage process.

 ! Randomly choose a distribution 
over topics.

 ! For each word in the document
a.  Randomly choose a topic from 

the distribution over topics in 
step #1.

b.  Randomly choose a word from the 
corresponding distribution over 
the vocabulary.

This statistical model reflects the 
intuition that documents exhibit mul-
tiple topics. Each document exhib-
its the topics in different proportion 
(step #1); each word in each docu-
ment is drawn from one of the topics 
(step #2b), where the selected topic is 
chosen from the per-document distri-
bution over topics (step #2a).b

In the example article, the distri-
bution over topics would place prob-
ability on genetics, data analysis, and 

b We should explain the mysterious name, “latent 
Dirichlet allocation.” The distribution that is 
used to draw the per-document topic distribu-
tions in step #1 (the cartoon histogram in Figure 
1) is called a Dirichlet distribution. In the genera-
tive process for LDA, the result of the Dirichlet 
is used to allocate the words of the document to 
different topics. Why latent? Keep reading.

Figure 1. The intuitions behind latent Dirichlet allocation. We assume that some number of “topics,” which are distributions over words,  
exist for the whole collection (far left). Each document is assumed to be generated as follows. First choose a distribution over the topics (the 
histogram at right); then, for each word, choose a topic assignment (the colored coins) and choose the word from the corresponding topic. 
The topics and topic assignments in this figure are illustrative—they are not fit from real data. See Figure 2 for topics fit from data.
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Latent semantic indexing (LSI)

Given a large corpus of n documents:

•
Fix a vocabulary, say of V words.

•
Bag-of-words representation for documents: each document

becomes a vector of length V , with one coordinate per word.

•
The corpus is an n ⇥ V matrix, one row per document.
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Let’s find a concise approximation to this matrix M.

Latent semantic indexing, cont’d

Use SVD to get an approximation to M: for small k ,
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Think of this as a topic model with k topics.

•
 

j

is a vector of length V describing topic j : coe�cient  

jw

is large

if word w appears often in that topic.

•
Each document is a combination of topics: ✓

ij

is the weight of topic

j in document i .

Document i originally represented by ith row of M, a vector in RV

.

Can instead use ✓
i

2 Rk

, a more concise “semantic” representation.



The rank of a matrix

Suppose we want to approximate a matrix M by a simpler matrix

b

M.

What is a suitable notion of “simple”?

•
Let’s say M and

b

M are p ⇥ q, where p  q.

•
Treat each row of

b

M as a data point in Rq

.

•
We can think of the data as “simple” if it actually lies in a

low-dimensional subspace.

•
If the rows lie in k-dimensional subspace, we say that

b

M has rank k .

The rank of a matrix is the number of linearly independent rows.

Low-rank approximation: given M 2 Rp⇥q

and an integer k , find the

matrix

b

M 2 Rp⇥q

that is the best rank-k approximation to M.

That is, find

b

M so that

• b

M has rank  k

•
The approximation error

P

i,j(Mij

� b

M

ij

)

2

is minimized.

We can get

b

M directly from the singular value decomposition of M.

Low-rank approximation

Recall: Singular value decomposition of p ⇥ q matrix M (with p  q):
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Example: Collaborative filtering

Details and images from Koren, Bell, Volinksy (2009).

Recommender systems: matching customers with products.

•
Given: data on prior purchases/interests of users

•
Recommend: further products of interest

Prototypical example: Netflix.

A successful approach: collaborative filtering.

•
Model dependencies between di↵erent products, and between

di↵erent users.

•
Can give reasonable recommendations to a relatively new user.

Two strategies for collaborative filtering:

•
Neighborhood methods

•
Latent factor methods

Neighborhood methods

43AUGUST 2009

well-defined dimensions such as depth of character de-
velopment or quirkiness; or completely uninterpretable 
dimensions. For users, each factor measures how much 
the user likes movies that score high on the correspond-
ing movie factor. 

Figure 2 illustrates this idea for a simplified example 
in two dimensions. Consider two hypothetical dimen-
sions characterized as female- versus male-oriented and 
serious versus escapist. The figure shows where several 
well-known movies and a few fictitious users might fall on 
these two dimensions. For this model, a user’s predicted 
rating for a movie, relative to the movie’s average rating, 
would equal the dot product of the movie’s and user’s lo-
cations on the graph. For example, we would expect Gus 
to love Dumb and Dumber, to hate The Color Purple, and 
to rate Braveheart about average. Note that some mov-
ies—for example, Ocean’s 11—and users—for example, 
Dave—would be characterized as fairly neutral on these 
two dimensions. 

MATRIX FACTORIZATION METHODS
Some of the most successful realizations of latent factor 

models are based on matrix factorization. In its basic form, 
matrix factorization characterizes both items and users by 
vectors of factors inferred from item rating patterns. High 
correspondence between item and user factors leads to a 

each song in the Music Genome Project 
based on hundreds of distinct musical 
characteristics. These attributes, or genes, 
capture not only a song’s musical identity 
but also many significant qualities that are 
relevant to understanding listeners’ musi-
cal preferences. 

An alternative to content filtering relies 
only on past user behavior—for example, 
previous transactions or product ratings—
without requiring the creation of explicit 
profiles. This approach is known as col-
laborative filtering, a term coined by the 
developers of Tapestry, the first recom-
mender system.1 Collaborative filtering 
analyzes relationships between users and 
interdependencies among products to 
identify new user-item associations. 

A major appeal of collaborative fil-
tering is that it is domain free, yet it can 
address data aspects that are often elusive 
and difficult to profile using content filter-
ing. While generally more accurate than 
content-based techniques, collaborative 
filtering suffers from what is called the cold 
start problem, due to its inability to ad-
dress the system’s new products and users. In this aspect, 
content filtering is superior. 

The two primary areas of collaborative filtering are the 
neighborhood methods and latent factor models. Neighbor-
hood methods are centered on computing the relationships 
between items or, alternatively, between users. The item-
oriented approach evaluates a user’s preference for an 
item based on ratings of “neighboring” items by the same 
user. A product’s neighbors are other products that tend 
to get similar ratings when rated by the same user. For 
example, consider the movie Saving Private Ryan. Its 
neighbors might include war movies, Spielberg movies, 
and Tom Hanks movies, among others. To predict a par-
ticular user’s rating for Saving Private Ryan, we would look 
for the movie’s nearest neighbors that this user actually 
rated. As Figure 1 illustrates, the user-oriented approach 
identifies like-minded users who can complement each 
other’s ratings. 

Latent factor models are an alternative approach 
that tries to explain the ratings by characterizing both 
items and users on, say, 20 to 100 factors inferred from 
the ratings patterns. In a sense, such factors comprise a 
computerized alternative to the aforementioned human-
created song genes. For movies, the discovered factors 
might measure obvious dimensions such as comedy versus 
drama, amount of action, or orientation to children; less 

Joe

#2

#3

#1

#4

Figure 1. The user-oriented neighborhood method. Joe likes the three 
movies on the left. To make a prediction for him, the system finds similar 
users who also liked those movies, and then determines which other movies 
they liked. In this case, all three liked Saving Private Ryan, so that is the first 
recommendation. Two of them liked Dune, so that is next, and so on. 



Latent factor methods
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vector qi  R f, and each user u is associ-
ated with a vector pu  R f. For a given item 
i, the elements of qi measure the extent to 
which the item possesses those factors, 
positive or negative. For a given user u, 
the elements of pu measure the extent of 
interest the user has in items that are high 
on the corresponding factors, again, posi-
tive or negative. The resulting dot product,  
qi

T pu, captures the interaction between user 
u and item i—the user’s overall interest in 
the item’s characteristics. This approximates 
user u’s rating of item i, which is denoted by 
rui, leading to the estimate 

 
r̂ui  

= qi
T pu. (1) 

The major challenge is computing the map-
ping of each item and user to factor vectors 
qi, pu  R f. After the recommender system 
completes this mapping, it can easily esti-
mate the rating a user will give to any item 
by using Equation 1. 

Such a model is closely related to singular value decom-
position (SVD), a well-established technique for identifying 
latent semantic factors in information retrieval. Applying 
SVD in the collaborative filtering domain requires factoring 
the user-item rating matrix. This often raises difficulties 
due to the high portion of missing values caused by sparse-
ness in the user-item ratings matrix. Conventional SVD is 
undefined when knowledge about the matrix is incom-
plete. Moreover, carelessly addressing only the relatively 
few known entries is highly prone to overfitting. 

Earlier systems relied on imputation to fill in missing 
ratings and make the rating matrix dense.2 However, im-
putation can be very expensive as it significantly increases 
the amount of data. In addition, inaccurate imputation 
might distort the data considerably. Hence, more recent 
works3-6 suggested modeling directly the observed rat-
ings only, while avoiding overfitting through a regularized 
model. To learn the factor vectors (pu and qi), the system 
minimizes the regularized squared error on the set of 
known ratings: 

min
* *,q p ( , )u i

(rui  qi
Tpu)

2 + (|| qi ||
2 + || pu ||

2)  (2) 

Here,  is the set of the (u,i) pairs for which rui is known 
(the training set). 

The system learns the model by fitting the previously 
observed ratings. However, the goal is to generalize those 
previous ratings in a way that predicts future, unknown 
ratings. Thus, the system should avoid overfitting the 
observed data by regularizing the learned parameters, 
whose magnitudes are penalized. The constant  controls 

recommendation. These methods have become popular in 
recent years by combining good scalability with predictive 
accuracy. In addition, they offer much flexibility for model-
ing various real-life situations. 

Recommender systems rely on different types of 
input data, which are often placed in a matrix with one 
dimension representing users and the other dimension 
representing items of interest. The most convenient data 
is high-quality explicit feedback, which includes explicit 
input by users regarding their interest in products. For 
example, Netflix collects star ratings for movies, and TiVo 
users indicate their preferences for TV shows by pressing 
thumbs-up and thumbs-down buttons. We refer to explicit 
user feedback as ratings. Usually, explicit feedback com-
prises a sparse matrix, since any single user is likely to 
have rated only a small percentage of possible items. 

One strength of matrix factorization is that it allows 
incorporation of additional information. When explicit 
feedback is not available, recommender systems can infer 
user preferences using implicit feedback, which indirectly 
reflects opinion by observing user behavior including pur-
chase history, browsing history, search patterns, or even 
mouse movements. Implicit feedback usually denotes the 
presence or absence of an event, so it is typically repre-
sented by a densely filled matrix. 

A BASIC MATRIX FACTORIZATION MODEL 
Matrix factorization models map both users and items 

to a joint latent factor space of dimensionality f, such that 
user-item interactions are modeled as inner products in 
that space. Accordingly, each item i is associated with a 

Geared
toward
males 

Serious

Escapist

The Princess
Diaries

Braveheart

Lethal Weapon

Independence
Day

Ocean’s 11
Sense and
Sensibility

Gus

Dave

Geared
toward

females 

Amadeus

The Lion King Dumb and
Dumber

The Color Purple

Figure 2. A simplified illustration of the latent factor approach, which 
characterizes both users and movies using two axes—male versus female 
and serious versus escapist. 

The matrix factorization approach

User ratings are assembled in a large matrix M:
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•
Not rated = 0, otherwise scores 1-5.

•
For n users and p movies, this has size n ⇥ p.

•
Most of the entries are unavailable, and we’d like to predict these.

Idea: Find the best low-rank approximation of M, and use it to fill in the

missing entries.



User and movie factors

Best rank-k approximation is of the form M ⇡ UW

T
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Thus user i ’s rating of movie j is approximated as

M

ij

⇡ u

i

· w
j

This “latent” representation embeds users and movies within the same

k-dimensional space:

•
Represent ith user by u

i

2 Rk

•
Represent jth movie by w

j

2 Rk

Top two Netflix factors
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Our winning entries consist of more than 100 differ-
ent predictor sets, the majority of which are factorization 
models using some variants of the methods described here. 
Our discussions with other top teams and postings on the 
public contest forum indicate that these are the most popu-
lar and successful methods for predicting ratings. 

Factorizing the Netflix user-movie matrix allows us 
to discover the most descriptive dimensions for predict-
ing movie preferences. We can identify the first few most 
important dimensions from a matrix decomposition and 
explore the movies’ location in this new space. Figure 3 
shows the first two factors from the Netflix data matrix 
factorization. Movies are placed according to their factor 
vectors. Someone familiar with the movies shown can see 
clear meaning in the latent factors. The first factor vector 
(x-axis) has on one side lowbrow comedies and horror 
movies, aimed at a male or adolescent audience (Half Baked, 
Freddy vs. Jason), while the other side contains drama or 
comedy with serious undertones and strong female leads 
(Sophie’s Choice, Moonstruck). The second factorization 
axis (y-axis) has independent, critically acclaimed, quirky 
films (Punch-Drunk Love, I Heart Huckabees) on the top, 
and on the bottom, mainstream formulaic films (Armaged-
don, Runaway Bride). There are interesting intersections 
between these boundaries: On the top left corner, where 
indie meets lowbrow, are Kill Bill and Natural Born Kill-
ers, both arty movies that play off violent themes. On the 
bottom right, where the serious female-driven movies meet 

preferences might cause a one-time 
event; however, a recurring event is 
more likely to reflect user opinion. 

The matrix factorization model 
can readily accept varying confidence 
levels, which let it give less weight to 
less meaningful observations. If con-
fidence in observing rui is denoted as 
cui, then the model enhances the cost 
function (Equation 5) to account for 
confidence as follows: 

min
* * *, ,p q b

( , )u i

cui(rui  µ bu  bi 

 pu
Tqi)

2 + (|| pu ||
2 + || qi ||

2  
 + bu

2 + bi
2)  (8) 

For information on a real-life ap-
plication involving such schemes, 
refer to “Collaborative Filtering for 
Implicit Feedback Datasets.”10 

NETFLIX PRIZE 
COMPETITION 

In 2006, the online DVD rental 
company Netflix announced a con-
test to improve the state of its recommender system.12 To 
enable this, the company released a training set of more 
than 100 million ratings spanning about 500,000 anony-
mous customers and their ratings on more than 17,000 
movies, each movie being rated on a scale of 1 to 5 stars. 
Participating teams submit predicted ratings for a test set 
of approximately 3 million ratings, and Netflix calculates 
a root-mean -square error (RMSE) based on the held-out 
truth. The first team that can improve on the Netflix algo-
rithm’s RMSE performance by 10 percent or more wins a 
$1 million prize. If no team reaches the 10 percent goal, 
Netflix gives a $50,000 Progress Prize to the team in first 
place after each year of the competition. 

The contest created a buzz within the collaborative fil-
tering field. Until this point, the only publicly available data 
for collaborative filtering research was orders of magni-
tude smaller. The release of this data and the competition’s 
allure spurred a burst of energy and activity. According to 
the contest website (www.netflixprize.com), more than 
48,000 teams from 182 different countries have down-
loaded the data. 

Our team’s entry, originally called BellKor, took over 
the top spot in the competition in the summer of 2007, 
and won the 2007 Progress Prize with the best score at the 
time: 8.43 percent better than Netflix. Later, we aligned 
with team Big Chaos to win the 2008 Progress Prize with a 
score of 9.46 percent. At the time of this writing, we are still 
in first place, inching toward the 10 percent landmark.
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Figure 3. The first two vectors from a matrix decomposition of the Netflix Prize 
data. Selected movies are placed at the appropriate spot based on their factor 
vectors in two dimensions. The plot reveals distinct genres, including clusters of 
movies with strong female leads, fraternity humor, and quirky independent films. 
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Worksheet 10 — PCA and SVD

1. Is the following set of vectors an orthonormal basis of R3? Explain why or why not.
0

@

3
4
0

1
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0
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0

1

A

,

0

@

0
0
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1

A

2. The following four figures show di↵erent 2-dimensional data sets. In each case, make a rough sketch
of an ellipsoidal contour of the covariance matrix and indicate the directions of the first and second
eigenvectors (mark which is which).

3. Let u1, u2 2 Rd be two vectors with ku1k = ku2k = 1 and u1 · u2 = 0. Define

U =

0

@

x

?

x

?

u1 u2
?

y

?

y

1

A
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(a) What are the dimensions of each of the following?

• U

• U

T

• UU

T

• u1u
T
1

(b) What are the di↵erences, if any, between the following four mappings?

• x 7! (u1 · x, u2 · x)
• x 7! (u1 · x)u1 + (u2 · x)u2

• x 7! U

T
x

• x 7! UU

T
x

4. Recall the animals with attributes data set from Worksheet 9, which has information about 50 animals,
each represented as a vector in R85.

We would like to visualize these animals in 2-d. Show how to do this with a PCA projection from
R85 to R2. Show the position of each animal, and label them with their names. (Remember from
Worksheet 9 how to enlarge the figure. This time you might want to ask for size 10,10.)

Does this embedding seem sensible to you?

5. In lecture, we looked at the e↵ect of projecting the MNIST data set of handwritten digits to lower-
dimension: from 784 to 200, 150, 100, 50 dimensions. We found that the reconstruction error was fairly
low for 150-dimensional projections, but noticeable for 50-dimensional projections.

We now investigate these issues further.

(a) Let X 2 Rd have covariance matrix ⌃. Suppose the eigenvalues of ⌃ are �1 � �2 � · · · � �d, and
suppose the corresponding eigenvectors are u1, u2, . . . , ud. Then it can be shown that X has an
overall variance of �1 + · · · + �d, and that when X is projected onto the top k eigenvectors, the
residual variance (the information that gets lost) is �k+1+ · · ·+�d. Therefore, for this projection,
the fraction of lost information, intuitively speaking, is

F (k) =
�k+1 + · · ·+ �d

�1 + · · ·+ �d

Compute these fractions for the MNIST data set, for k = 200, 150, 100, 50, 25.

(b) Suppose we are allowed a di↵erent projection for each digit. We would then expect that we can
project to an even lower dimension while maintaining roughly the same amount of information.
Test whether this is true as follows: for each digit j = 0, 1, 2, . . . , 9,

• Obtain the PCA projection to k dimensions, for k = 200, 150, 100, 50, 25.

• Compute the fraction Fj(k), for each such value of k.

• Pick a random instance of the digit. Show the original digit as well as its reconstruction
at each of these five values of k. (Note: the original images have pixel values in the range
0-255, but this might not be true of the reconstructions; therefore, you may need to clip the
reconstructed pixels to lie within this range before displaying the image.)

Show all the fractions Fj(k) in a table. Which digit seems to be the most amenable to low-
dimensional projection?
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