Spark Basics 2
Lazy evaluation

We can combine map and reduce operations to perform more complex operations.

Suppose we want to compute the sum of the squares [Math Processing Error] where the elements [Math Processing Error] are stored in an RDD.
Create an RDD

In [2]:
B = sc.parallelize(range(4))
B.collect()

Out[2]: [0, 1, 2, 3]
Sequential syntax

Perform assignment after each computation

In [3]:
Squares=B.map(lambda x:x*x)
Squares.reduce(lambda x,y:x+y)

Out[3]: 14
Cascaded syntax

Combine computations into a single cascaded command

In [4]:
B.map(lambda x:x*x)
 .reduce(lambda x,y:x+y)

Out[4]: 14
Both syntaxes mean the same thing

The only difference:

- In the sequential syntax the intermediate RDD has a name Squares
- In the cascaded syntax the intermediate RDD is *anonymous*

The execution is identical!
Sequential execution

The standard way that the map and reduce are executed is

- perform the map
- store the resulting RDD in memory
- perform the reduce

Disadvantages of Sequential execution

1. Intermediate result (Squares) requires memory space.
2. Two scans of memory (of B, then of Squares) - double the cache-misses.
Pipelined execution

Perform the whole computation in a single pass. For each element of B

1. Compute the square
2. Enter the square as input to the reduce operation.

Advantages of Pipelined execution

1. Less memory required - intermediate result is not stored.
2. Faster - only one pass through the Input RDD.
Lazy Evaluation

This type of pipelined evaluation is related to **Lazy Evaluation**. The word *Lazy* is used because the first command (computing the square) is not executed immediately. Instead, the execution is delayed as long as possible so that several commands are executed in a single pass.

The delayed commands are organized in an **Execution plan**.
An instructive mistake

Here is another way to compute the sum of the squares using a single reduce command. What is wrong with it?

In [5]:
```python
C=sc.parallelize([1,1,1])
C.reduce(lambda x,y: x*x+y*y)
```

Out[5]: 5

1 1 1
getting information about an RDD

RDD's typically have hundreds of thousands of elements. It usually makes no sense to print out the content of a whole RDD. Here are some ways to get manageable amounts of information about an RDD

In [6]:

```python
n=1000000
B=sc.parallelize([(0,0,1)*(n//4)])
```
#find the number of elements in the RDD
B.count()

1000000
get the first few elements of an RDD

```python
print 'first element=', B.first()
print 'first 5 elements = ', B.take(5)
```

```
first element= 0
first 5 elements = [0, 0, 1, 0, 0]
```
Sampling an RDD

- RDDs are often very large.
- Aggregates, such as averages, can be approximated efficiently by using a sample.
- Sampling is done in parallel and it keeps the data local.

In [9]: # get a sample whose expected size is m
m=5.
B.sample(False,m/n).collect()

Out[9]: [1, 0, 1, 0, 0, 0]
filtering an RDD

The method RDD.filter(func) Return a new dataset formed by selecting those elements of the source on which func returns true.

In [10]: # How many positive numbers?
 B.filter(lambda n: n > 0).count()

Out[10]: 250000
Removing duplicate elements from an RDD

The method RDD\texttt{.distinct(numPartitions=None)} Returns a new dataset that contains the distinct elements of the source dataset

- The number of partitions is specified through the \texttt{numPartitions} argument. Each of this partitions is potentially on different machine.

In [11]: # Remove duplicate element in DuplicateRDD, we get distinct RDD
DuplicateRDD = sc.parallelize([1,1,2,2,3,3])
DistinctRDD = DuplicateRDD.distinct()
DistinctRDD.collect()

Out[11]: [1, 2, 3]
The method RDDflatMap(func) is similar to map, but each input item can be mapped to 0 or more output items (so func should return a Seq rather than a single item).

```
In [12]:
    text=['you are my sunshine', 'my only sunshine']
    text_file = sc.parallelize(text)
    # map each line in text to a list of words
    print 'map:', text_file.map(lambda line: line.split(' ')).collect()
    # create a single list of words by combining the words from all of the lines
    print 'flatMap:', text_file.flatMap(lambda line: line.split(' ')).collect()

map: [['you', 'are', 'my', 'sunshine'], ['my', 'only', 'sunshine']]
flatMap: ['you', 'are', 'my', 'sunshine', 'my', 'only', 'sunshine']
```
Set operations

In this part, we explore set operations including union, intersection, subtract, cartesian in pyspark

In [13]:

```python
rdd1 = sc.parallelize([1, 1, 2, 3])
rdd2 = sc.parallelize([1, 3, 4, 5])
```
1. `union(other)`
 - Return the union of this RDD and another one.

In [14]: rdd1.union(rdd2).collect()
Out[14]: [1, 1, 2, 3, 1, 3, 4, 5]
1. intersection(other)
 - Return the intersection of this RDD and another one. The output will not contain any duplicate elements, even if the input RDDs did. Note that this method performs a shuffle internally.

In [15]: rdd1.intersection(rdd2).collect()

Out[15]: [1, 3]
1. subtract(other, numPartitions=None)
 • Return each value in self that is not contained in other.

In [16]: rdd1.subtract(rdd2).collect()

Out[16]: [2]
1. \texttt{cartesian(other)}
 • Return the Cartesian product of this RDD and another one, that is, the RDD of all pairs of elements \((a, b)\) where \(a\) is in \texttt{self} and \(b\) is in \texttt{other}.

\begin{verbatim}
In [17]: print rdd1.cartesian(rdd2).collect()

[(1, 1), (1, 3), (1, 4), (1, 5), (1, 1), (1, 3), (1, 4), (1, 5), (2, 1), (2, 3), (2, 4), (2, 5), (3, 1), (3, 3), (3, 4), (3, 5)]
\end{verbatim}