Apache Spark
Making Interactive Big Data Applications Fast AND Easy
Holden Karau (with thanks to Pat!)
Spark Overview

Goal: easily work with large scale data in terms of transformations on distributed data
- Traditional distributed computing platforms scale well but have limited APIs (map/reduce)
- Spark lets us tackle problems too big for a single machine
- Spark has an expressive data focused API which makes writing large scale programs easy
Scala vs Java API vs Python

Spark was originally written in Scala, which allows concise function syntax and interactive use

Java API added for standalone applications

Python API added more recently along with an interactive shell.

This course: mostly Scala, some translations shown to Java & Python
Outline

Introduction to Scala & functional programming

Spark Concepts

Spark API Tour

Stand alone application

A picture of a cat
Introduction to Scala

What is Scala?

Functions in Scala

Operating on collections in Scala
About Scala

High-level language for the JVM
- Object oriented + functional programming

Statically typed
- Comparable in speed to Java*
- Type inference saves us from having to write explicit types most of the time

Interoperates with Java
- Can use any Java class (inherit from, etc.)
- Can be called from Java code
Best way to Learn Scala

Interactive scala shell (just type scala)

Supports importing libraries, tab completing, and all of the constructs in the language

http://www.scala-lang.org/
Quick Tour of Scala

Declaring variables:

```scala
var x: Int = 7
var x = 7 // type inferred
val y = "hi" // read-only
```

Java equivalent:

```java
int x = 7;
final String y = "hi";
```

Functions:

```scala
def square(x: Int): Int = x*x
def square(x: Int): Int = {
  x*x
}
def announce(text: String) = {
  println(text)
}
```

Java equivalent:

```java
int square(int x) {
  return x*x;
}
void announce(String text) {
  System.out.println(text);
}
```
Scala functions (closures)

(x: Int) => x + 2 // full version
Scala functions (closures)

(x: Int) => x + 2 // full version

x => x + 2 // type inferred
Scala functions (closures)

(x: Int) => x + 2 // full version

x => x + 2 // type inferred

_ + 2 // placeholder syntax (each argument must be used exactly once)
Scala functions (closures)

(x: Int) => x + 2 // full version

x => x + 2 // type inferred

_ + 2 // placeholder syntax (each argument must be used exactly once)

x => { // body is a block of code
 val numberToAdd = 2
 x + numberToAdd
}
Scala functions (closures)

(x: Int) => x + 2 // full version

x => x + 2 // type inferred

_ + 2 // placeholder syntax (each argument must be used exactly once)

x => { // body is a block of code
 val numberToAdd = 2
 x + numberToAdd
}

// Regular functions
def addTwo(x: Int): Int = x + 2
Quick Tour of Scala Part 2
(electric boogaloo)

Processing collections with functional programming
val lst = List(1, 2, 3)
lst.foreach(println(x)) // prints 1, 2, 3
lst.foreach(println) // same

lst.map(x => x + 2) // returns a new List(3, 4, 5)
lst.map(_ + 2) // same

lst.filter(x => x % 2 == 1) // returns a new List(1, 3)
lst.filter(_ % 2 == 1) // same

lst.reduce((x, y) => x + y) // => 6
lst.reduce(_ + _) // same

All of these leave the list unchanged as it is immutable.
Functional methods on collections

There are a lot of methods on Scala collections, just google Scala Seq or http://www.scala-lang.org/api/2.10.4/index.html#scala.collection.Seq

<table>
<thead>
<tr>
<th>Method on Seq[T]</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>map(f: T => U): Seq[U]</td>
<td>Each element is result of f</td>
</tr>
<tr>
<td>flatMap(f: T => Seq[U]): Seq[U]</td>
<td>One to many map</td>
</tr>
<tr>
<td>filter(f: T => Boolean): Seq[T]</td>
<td>Keep elements passing f</td>
</tr>
<tr>
<td>exists(f: T => Boolean): Boolean</td>
<td>True if one element passes f</td>
</tr>
<tr>
<td>forall(f: T => Boolean): Boolean</td>
<td>True if all elements pass</td>
</tr>
<tr>
<td>reduce(f: (T, T) => T): T</td>
<td>Merge elements using f</td>
</tr>
<tr>
<td>groupBy(f: T => K): Map[K, List[T]]</td>
<td>Group elements by f</td>
</tr>
<tr>
<td>sortBy(f: T => K): Seq[T]</td>
<td>Sort elements</td>
</tr>
<tr>
<td>.....</td>
<td></td>
</tr>
</tbody>
</table>
Spark

Resilient Distributed Data Sets (the core building block)
Log Mining example
Fault Recovery
Spark

Write programs in terms of transformations on distributed datasets

Resilient Distributed Datasets
- Immutable, partitioned collections of objects spread across a cluster, stored in RAM or on Disk
- Built through lazy parallel transformations
- Automatically rebuilt on failure

Operations
- Transformations (e.g. map, filter, groupBy)
- Actions (e.g. count, collect, save)
RDDs: Distributed
RDDs: Distributed

- Data does not have to fit on a single machine
- Data is separated into partitions
 - If we need we can operate on our data partition at a time
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns.
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```scala
val lines = spark.textFile("hdfs://...")
```
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

val lines = spark.textFile("hdfs://...")
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```scala
val lines = spark.textFile("hdfs://...")
val errors = lines.filter(_.startsWith("ERROR"))
```
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```scala
val lines = spark.textFile("hdfs://...")
val errors = lines.filter(_.startsWith("ERROR"))
```
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```scala
val lines = spark.textFile("hdfs://...")
val errors = lines.filter(_.startsWith("ERROR"))
val messages = errors.map(_.split(\'\t\')(2))

messages.filter(_.contains("mysql")).count()
```
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```scala
val lines = spark.textFile("hdfs://...")
val errors = lines.filter(_.contains("ERROR"))
val messages = errors.map(_.split("\t")(2))
messages.cache()

messages.filter(_.contains("mysql")).count()
```
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```scala
val lines = spark.textFile("hdfs://...")
val errors = lines.filter(_.startsWith("ERROR"))
val messages = errors.map(_.split(\'\t\')(2))
messages.cache()

messages.filter(_.contains("mysql")).count()
```
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```scala
val lines = spark.textFile("hdfs://...")
val errors = lines.filter(_.startsWith("ERROR"))
val messages = errors.map(_.split('\t')(2))
messages.cache()

messages.filter(_.contains("mysql")).count()
```
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```scala
val lines = spark.textFile("hdfs://...")
val errors = lines.filter(_.startsWith("ERROR"))
val messages = errors.map(_.split('\t')(2))
messages.cache()

messages.filter(_.contains("mysql")).count()
```
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```scala
val lines = spark.textFile("hdfs://...")
val errors = lines.filter(_.startsWith("ERROR"))
val messages = errors.map(_.split('\t')(2))
messages.cache()

messages.filter(_.contains("mysql")).count()
```
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```scala
val lines = spark.textFile("hdfs://...")
val errors = lines.filter(_.startsWith("ERROR"))
val messages = errors.map(_.split('\t')(2)).cache()

messages.filter(_.contains("mysql")).count()
```
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```scala
val lines = spark.textFile("hdfs://...")
val errors = lines.filter(_.startsWith("ERROR"))
val messages = errors.map(_.split(\'\t\')(2))
messages.cache()

messages.filter(_.contains("mysql")).count()
```
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```scala
val lines = spark.textFile("hdfs://...")
val errors = lines.filter(_.startsWith("ERROR"))
val messages = errors.map(_.split('\t')(2))
messages.cache()

messages.filter(_.contains("mysql")).count()
messages.filter(_.contains("php")).count()
```
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```scala
val lines = spark.textFile("hdfs://...")
val errors = lines.filter(_.startsWith("ERROR"))
val messages = errors.map(_.split(\'\t\')(2))
messages.cache()

messages.filter(_.contains("mysql")).count()
messages.filter(_.contains("php")).count()
```
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```scala
val lines = spark.textFile("hdfs://...")
val errors = lines.filter(_.startsWith("ERROR"))
val messages = errors.map(_.split('\t')(2))
messages.cache()

messages.filter(_.contains("mysql")).count()
messages.filter(_.contains("php")).count()
```
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```scala
val lines = spark.textFile("hdfs://...")
val errors = lines.filter(_.startsWith("ERROR"))
val messages = errors.map(_.split('\t')(2))
messages.cache()

messages.filter(_.contains("mysql")).count()
messages.filter(_.contains("php")).count()
```
Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```scala
val lines = spark.textFile("hdfs://...")
val errors = lines.filter(_.startsWith("ERROR"))
val messages = errors.map(_.split(\'t\')(2))
messages.cache()

messages.filter(_.contains("mysql")).count()
messages.filter(_.contains("php")).count()
```

Cache your data ➔ Faster Results
- 1 TB of log data data
 - 5-7 sec from cache vs. 170s for on-disk
Example: Log Mining
Pretty much the same in Python

```python
lines = spark.textFile("hdfs://...")
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2])
messages.cache()

messages.filter(lambda s: "mysql" in s).count()
messages.filter(lambda s: "php" in s).count()
```

Cache your data ➔ Faster Results

1 TB of log data data
- 5-7 sec from cache vs. 170s for on-disk
Fast: Using RAM, Operator Graphs

In-memory Caching
- Data Partitions read from RAM instead of disk

Operator Graphs
- Scheduling Optimizations
- Fault Tolerance

= RDD
= cached partition
Fault Recovery

RDDs track *lineage* information that can be used to efficiently recompute lost data

```python
msgs = textFile.filter(_.contains("ERROR"))
  .map(_.split(\t')(2))
```
Tour of Spark operations

API for working with RDDs
Basic operations
Key, Value pairs
Easy: Expressive API

<table>
<thead>
<tr>
<th>map</th>
<th>reduce</th>
<th>sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>filter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>groupBy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sort</td>
<td></td>
<td></td>
</tr>
<tr>
<td>union</td>
<td></td>
<td></td>
</tr>
<tr>
<td>join</td>
<td></td>
<td></td>
</tr>
<tr>
<td>leftOuterJoin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rightOuterJoin</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DATABRICKS
Creating RDDs

Turn a Python collection into an RDD
>sc.parallelize([1, 2, 3])

Turn a Scala collection into an RDD
>sc.parallelize(List(1, 2, 3))

Load text file from local FS, HDFS, or S3
>sc.textFile("file.txt")
>sc.textFile("directory/*\txt")
>sc.textFile("hdfs://namenode:9000/path/file")

Use existing Hadoop InputFormat (Java/Scala only)
>sc.hadoopFile(keyClass, valClass, inputFmt, conf)
Basic Transformations (scala)

```scala
>val nums = sc.parallelize(List(1, 2, 3))

// Pass each element through a function
>val squares = nums.map(x: x*x)  // {1, 4, 9}

// Keep elements passing a predicate
>val even = squares.filter(x => x % 2 == 0)  // {4}

// Map each element to zero or more others
>nums.flatMap(x => 0.to(x))
//=> {0, 1, 0, 1, 2, 0, 1, 2, 3}
```
Less Basic Transformations (scala)

// Pass each partition through a function
>val squares = nums.mapPartition(x.map(x * x)) // {1, 4, 9}
Set operations

- **this.union(rdd)** - Produce a new RDD with elements from both rdds (fast!)
- **this.intersect*(rdd)** - surprisingly slow
- **this.cartesian(rdd)** - Produce an RDD with the cartesian product from both RDDs (possibly not very fast)
Basic Actions (scala)

>val nums = sc.parallelize(List(1, 2, 3))

// Retrieve RDD contents as a local collection
>nums.collect() //=> List(1, 2, 3)

// Return first K elements
>nums.take(2) //=> List(1, 2)

// Count number of elements
>nums.count() //=> 3

// Merge elements with an associative function
>nums.reduce{case (x, y) => x + y} //=> 6

// Write elements to a text file
>nums.saveAsTextFile("hdfs://file.txt")
Basic Transformations (python)

>`nums = sc.parallelize([1, 2, 3])`

Pass each element through a function
>`squares = nums.map(lambda x: x*x) // {1, 4, 9}`

Keep elements passing a predicate
>`even = squares.filter(lambda x: x % 2 == 0) // {4}`

Map each element to zero or more others
>`numsflatMap(lambda x: => range(x))`
 > # => {0, 0, 1, 0, 1, 2}`
Basic Actions (python)

```python
>nums = sc.parallelize([1, 2, 3])

# Retrieve RDD contents as a local collection
>nums.collect() # => [1, 2, 3]

# Return first K elements
>nums.take(2) # => [1, 2]

# Count number of elements
>nums.count() # => 3

# Merge elements with an associative function
>nums.reduce(lambda x, y: x + y) # => 6

# Write elements to a text file
>nums.saveAsTextFile("hdfs://file.txt")
```
Working with Key-Value Pairs

Spark’s “distributed reduce” transformations operate on RDDs of key-value pairs

Python:
```python
pair = (a, b)
pair[0]  # => a
pair[1]  # => b
```

Scala:
```scala
val pair = (a, b)
pair._1  // => a
pair._2  // => b
```

Java:
```java
Tuple2 pair = new Tuple2(a, b);
pair._1  // => a
pair._2  // => b
```
Some Key-Value Operations

```scala
def reduceByKey(_ + _) {  
pets = sc.parallelize(List(("cat", 1), ("dog", 1), ("cat", 2)))  
pets.reduceByKey(_ + _)  
  //=> ((cat, 3), (dog, 1))  
pets.groupByKey()  
  //=> Map(cat -> List(1, 2), dog -> List(1))  
pets.sortByKey()  
  //=> List((cat, 1), (cat, 2), (dog, 1))
```

reduceByKey also automatically implements combiners on the map side

Some Key-Value Operations

(python)

```python
> pets = sc.parallelize(
    [("cat", 1), ("dog", 1), ("cat", 2)])
> pets.reduceByKey(lambda x, y: x + y)
    # => {"cat": 3, "dog": 1}
> pets.groupByKey() # => {"cat": [1, 2], "dog": [1]}
> pets.sortByKey() # => {"cat": 1, "cat": 2, "dog": 1}
```

reduceByKey also automatically implements combiners on the map side
Other Key-Value Operations

> visits = sc.parallelize(List(("index.html", "1.2.3.4"),
 ("about.html", "3.4.5.6"),
 ("index.html", "1.3.3.1")))

> pageNames = sc.parallelize(List(("index.html", "Home"),
 ("about.html", "About")))

> visits.join(pageNames)
 // ("index.html", ("1.2.3.4", "Home"))
 // ("index.html", ("1.3.3.1", "Home"))
 // ("about.html", ("3.4.5.6", "About"))

> visits.cogroup(pageNames)
 // ("index.html", (Seq("1.2.3.4", "1.3.3.1"), Seq("Home")))
 // ("about.html", (Seq("3.4.5.6"), Seq("About")))
Setting the Level of Parallelism

All the pair RDD operations take an optional second parameter for number of tasks

```scala
> words.reduceByKey(_ + _, 5)
> words.groupByKey(5)
> visits.join(pageViews, 5)
```

Can also set the `spark.default.parallelism` property
Using Local Variables

Any external variables you use in a closure will automatically be shipped to the cluster:

```scala
> val query = "pandas"
> pages.filter(_.contains(query)).count()
```

Some caveats:
Each task gets a new copy (updates aren’t sent back)
Variable must be Serializable / Pickle-able
Don’t use fields of an outer object (ships all of it!)
Complete App (Scala)

```scala
import org.apache.spark._
import org.apache.spark.SparkContext._

object WordCount {
  def main(args: Array[String]) {
    val sc = new SparkContext(args(0), "BasicMap",
                             System.getenv("SPARK_HOME"))
    val input = sc.textFile(args(1))
    val counts = input.flatMap(_.split(" "))
                   .map((_, 1)).reduceByKey(_ + _)
    counts.saveAsTextFile(args(2))
  }
}
```
Getting Spark

Download: http://spark.apache.org/downloads.html

Link with Spark in your sbt/maven project:
 groupld: org.apache.spark
 artifactId: spark-core_2.10
 version: 0.9.0-incubating
Using the Shell

Launching:

```
spark-shell pyspark (IPYTHON=1)
```

Modes:

- `MASTER=local ./spark-shell` # local, 1 thread
- `MASTER=local[2] ./spark-shell` # local, 2 threads
- `MASTER=spark://host:port ./spark-shell` # cluster
Example: Word Count

```scala
val lines = sc.textFile("hamlet.txt")
val counts = lines.flatMap(_.split(" "))
  .map((_, 1))
  .reduceByKey(_ + _)
```
Example: Word Count

```scala
> lines = sc.textFile("hamlet.txt")
> counts = lines.flatMap(lambda line: line.split(" "))
  .map(lambda word => (word, 1))
  .reduceByKey(lambda x, y: x + y)
```