Active learning

Co-training

Subtract-average detection score

Grey-scale detection score

Summary

- **Boosting** is a method for learning an accurate classifiers by combining many weak classifiers.
- Boosting is resistant to over-fitting.
- Margins quantify prediction confidence.
- **High noise** is a serious problem for learning classifierscan't be solved by minimizing convex functions.
- **Robustboost** can solve some high noise problems. Exact characterization still unclear.
- **Jboost** an implementation of ADTrees and various boosting algorithms in java.
- **Book** on boosting coming this spring.

Thank you, questions?

Pedestrian detection - typical segment

Current best results

Image Features

"Rectangle filters"

Similar to Haar wavelets

Papageorgiou, et al.

$$h_t(x_i) = \begin{cases} 1 & \text{if } f_t(x_i) > \theta_t \\ 0 & \text{otherwise} \end{cases}$$

Very fast to compute using "integral image".

60,000×100 = 6,000,000 Unique Binary Features

Combined using adaboost

Yotam's features

Faster to calculate than Viola and Jones

Search for a good feature based on genetic programming

Definition

- •Feature works in one of 3 resolutions: full, half, quarter
- •Two sets of up to 6 points each
- Each point is an individual pixel
- •Feature says yes if *all* white points have higher values then *all* black points, or vice versa

5/17/06 UCLA

Advantages

- Deal better with the variation in illumination, no need to normalize.
- Highly efficient (3-4 image access operations). 2 times faster than Viola&Jones
- 20% of the memory

Steps of batch learning

- Collect labeled examples
- Run learning algorithm to generate classification rule
- Test classification rule on new data.

Labeling process

Steps of active learning

- Collect labeled examples
- Run learning algorithm to generate classification rule
- Apply classifier on new data. and
 - label informative examples.

SEVILLE screen shot 1

5/17/06 UCLA

SEVILLE screen shot 2

5/17/06 UCLA

Margins

Consider the following:

An example: $\langle x,y \rangle$ e.g. $\langle \omega \rangle$,+1> Normalized score: $-1 \leq \frac{\sum_{t=1}^{T} \alpha_t h_t(x)}{\sum_{t=1}^{T} |\alpha_t|} \leq 1$ The margin is: $y \frac{\sum_{t=1}^{T} \alpha_t h_t(x)}{\sum_{t=1}^{T} |\alpha_t|}$

margin > 0 means correct classification

5/17/06 UCLA

large margins => reliable predictions

Margin Distributions

Summary of Training effort

Step	total can- didates	presented	labeled	human labor	positive	negative	training time	Weak rules
1	510 K	-	16	3m	6	10	2s	1
2	680 K	364	403	3m	36	374	6s	3
3	3,400 K	153	156	4m	46	520	22s	7
4	66,470 K	805	852	10m	86	1332	1m30s	30
5	37,910 K	1350	1439	10m	182	2675	8m	59
6	116,960 K	5150	5364	1h30m	417	7804	1h10m	270
7	24,140 K	1320	863	3h	848	8236	7h30m	893
8	189,550 K	8690	8707	3h	1178	16613	17h	1500
9	209,610 K	2933	2933	3h	1486	19238	30h	2034
10	274,210 K	3861	3861	4h	2046	22533	30h	3150

Summary of Training

Only examples whose score is in this range are hand - labeled

)								
Step	total can- didates	μ^{-}	μ^+	presented	labeled	human labor	positive	negative	training time	Weak rules
1	510 K	-	-	-	16	3m	6	10	2s	1
2	680 K	0	1	364	403	3m	36	374	6s	3
3	3,400 K	0.6	1	153	156	4m	46	520	22s	7
4	66,470 K	0.4	1	805	852	10m	86	1332	1m30s	30
5	37,910 K	0.1	0.8	1350	1439	10m	182	2675	8m	59
6	116,960 K	0	0.6	5150	5364	1h30m	417	7804	1h10m	270
7	24,140 K	-0.02	0.5	1320	863	3h	848	8236	7h30m	893
8	189,550 K	-0.02	0.5	8690	8707	3h	1178	16613	17h	1500
9	209,610 K	-0.02	0.5	2933	2933	3h	1486	19238	30h	2034
10	274,210 K	-0.02	0.5	3861	3861	4h	2046	22533	30h	3150

Few training examples

After re-labeling feedback

Final detector

Examples - easy

Positive

Negative

Examples - medium

Positive

Negative

Examples - hard

Positive

Negative

And the figure in the gown is..

Seville cycles

Summary

- Boosting and SVM control over-fitting using margins.
- Margins measure the stability of the prediction, not conditional probability.
- Margins are useful for co-training and for active-learning.