Active learning



Co-training
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Summary

Boosting 1s a method for learning an accurate classifiers by
combining many weak classifiers.

Boosting 1s resistant to over-fitting.
Margins quantify prediction confidence.

High noise 1s a serious problem for learning classifiers-
can’t be solved by minimizing convex functions.

Robustboost can solve some high noise problems. Exact
characterization still unclear.

Jboost - an implementation of ADTrees and various
boosting algorithms 1n java.

Book on boosting coming this spring.

Thank You, questions?



Pedestrian detection - typical segment
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Image Features

“Rectangle filters™

Similar to Haar wavelets

Papageorgiou, et al.

1 iff,(x,)> 6,

h,(x;) =1 .
O otherwise

Very fast to compute using
“Integral image”.

60,000x100 = 6,000,000
Unique Binary Features

Combined using adaboost
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Yotam’s features

max (pl,p2) < min(ql,q2,q93,94)

Faster to calculate than Viola and Jones

Search for a good feature based on genetic programming
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Definition

Feature works in one of 3
resolutions: full, half,
quarter

*Two sets of up to 6 points
each

Each point is an individual
pixel

*Feature says yes if all
white points have higher
values then all black points,
or vice versa
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Advantages

 Deal better with the
variation in illumination,
no need to normalize.

» Highly efficient (3-4
Image access
operations). 2 times
faster than Viola&Jones

» 20% of the memory
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Steps of batch learning

* Collect labeled examples

* Run learning algorithm to generate
classification rule

 Test classification rule on new data.
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Labeling process

WinSeville 3.0 - AdaBoostResults. txt/trainSeqg5.avi

File View Collection Training Detection Tools Help

PR — |
1500 pedestrians

Collected 6 Hrs of video -> 540,000 frames
170,000 boxes per frame

T b N - A" A SN 1|

20 seconds for marking a box around a pedestrian.
== = YR |

3 seconds for deciding if box is pedestrian or not.
[T————ean i ————

How to choose “hard” negative examples?
e T

I» I » | . | Classify | Pos.

2296434 after finish
684775319 beain
0 before starting
Finished classifying

AllPos

Neg. AllNeg

| |1214
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Steps of active learning

/\- Collect labeled examples

* Run learning algorithm to generate
classification rule

* Apply classifier on new data.

and
\/ label informative examples.
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SEVILLE screen shot 1

WinSeville 3.0 - AdaBoostResults.txt/trainSeq5.avi

File View Collection Training Detection Tools Help

23 l P | B | Classify | : Neg. | AlPos | AlNeg
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2296434 after finish
684775319 begin

0 before starting
Finished classifying
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SEVILLE screen shot 2

WinSeville 3.0 - AdaBoostResults. txt/trainSeq5.avi

File Wiew Collection Training Detection Tools Help

|> | > | . | Classify | . Neq. I AllPos &llNeqg

{
|

2300860 after finish
618748426 begin

0 before starting
Finished classifying
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Margins

Consider the following:

An example: <xXy> eq.< &
Normalized score: _1<th:loctht(x) .
Y
2., oh ()

The marginis: vy

Y, o]

margin > 0 means correct classification
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large margins => reliable predictions

CLASSIFICATION ERROR

Validation

TRAINING SET

) ) i1Asa., =) (=] =50.a Famaa
NUMEBEER OF HERK LpARNERS
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Margin Distributions

0.25
Bl pos train
B pos test
unfiltered
N neg test
Bl neg train
0.2 ‘
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Summary of Training effort

Step

total can-
didates

—

510K

680 K

3400 K

66,470 K

37910 K

116960 K

24,140 K

189550 K

C | X (|| N W N

209610K

S

274210 K

presented| labeled || human positive|| negative | training| Weak
labor time rules
- 16 3m 6 10 2s 1
364 403 3m 36 374 6s 3
153 156 4m 46 520 22s 7
805 852 10m 86 1332 Im30s || 30
1350 1439 10m 182 2675 8m 59
5150 5364 1h30m 417 7804 Ilh10m || 270
1320 863 3h 848 8236 7h30m || 893
8690 8707 3h 1178 16613 17h 1500
2933 2933 3h 1486 19238 30h 2034
3861 3861 4h 2046 22533 30h 3150
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Summary of Training

Only examples whose score is in this range are hand - labeled

Step|| total can- || p— put presented| labeled || human positive|| negative | training| Weak
didates labor time rules

1 510K - - - 16 3m 6 10 2s 1

2 680 K 0 1 364 403 3m 36 374 6s 3

3 3400 K 0.6 1 153 156 4m 46 520 22s 7

! 66470 K 0.4 1 805 852 10m 86 1332 Im30s || 30

5 37910 K 0.1 0.8 1350 1439 10m 182 2675 8m 59

6 116 960K || O 0.6 5150 5364 1h30m 417 7804 Ilh10m | 270

7 24,140 K -0.02 0.5 1320 863 3h 848 8236 7h30m || 893

8 189550 K || -0.02 0.5 8690 8707 3h 1178 16613 17h 1500

9 209610 K || -0.02 0.5 2933 2933 3h 1486 19238 30h 2034

10 274210 K || -0.02 0.5 3861 3861 4h 2046 22533 30h 3150
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Few training examples
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After re-labeling feedback
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Final detector
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Negative

Examples - easy

Positive
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Examples - medium

Positive Negative
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Examples - hard
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And the figure in the gown is..
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Seville cycles
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Summary

* Boosting and SVM control over-fitting
using margins.

* Margins measure the stability of the
prediction, not conditional probabillity.

* Margins are useful for co-training and for
active-learning.
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