An overview of Boosting

Yoav Freund UCSD

Plan of talk

- Generative vs. non-generative modeling
- Boosting
- Alternating decision trees
- Boosting and over-fitting
- Applications

Toy Example

- Computer receives telephone call
- Measures Pitch of voice
- Decides gender of caller

Generative modeling

Discriminative approach [Vapnik 85]

Ill-behaved data

Traditional Statistics vs. Machine Learning

Comparison of methodologies

Model	Generative	Discriminative
Goal	Probability estimates	Classification rule
Performance measure	Likelihood	Misclassification rate
Mismatch problems	Outliers	Misclassifications

A weighted training set

Feature vectors

A weak learner

The boosting process

$$(x_{1},y_{1},1),(x_{2},y_{2},1),...,(x_{n},y_{n},1) \text{ weak learner } h_{1}$$

$$(x_{1},y_{1},w_{1}^{1}),(x_{2},y_{2},w_{2}^{1}),...,(x_{n},y_{n},w_{n}^{1}) \text{ weak learner } h_{2}$$

$$(x_{1},y_{1},w_{1}^{2}),(x_{2},y_{2},w_{2}^{2}),...,(x_{n},y_{n},w_{n}^{2}) \text{ h}_{3}$$

$$(x_{1},y_{1},w_{1}^{T-1}),(x_{2},y_{2},w_{2}^{T-1}),...,(x_{n},y_{n},w_{n}^{T-1}) \text{ h}_{3}$$

$$F_{T}(x) = \alpha_{1}h_{1}(x) + \alpha_{2}h_{2}(x) + ... + \alpha_{T}h_{T}(x)$$

$$Prediction(x) = sign(F_{T}(x))$$

A Formal Description of Boosting

- given training set $(x_1, y_1), \ldots, (x_m, y_m)$
- $y_i \in \{-1, +1\}$ correct label of instance $x_i \in X$
- for t = 1, ..., T:
 - construct distribution D_t on $\{1, \ldots, m\}$
 - find weak classifier ("rule of thumb")

 $h_t: X \to \{-1, +1\}$

with small error ϵ_t on D_t :

 $\epsilon_t = \mathsf{Pr}_{i \sim D_t}[h_t(x_i) \neq y_i]$

• output final classifier H_{final}

AdaBoost

- constructing D_t :
 - $D_1(i) = 1/m$
 - given D_t and h_t :

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} e^{-\alpha_t} & \text{if } y_i = h_t(x_i) \\ e^{\alpha_t} & \text{if } y_i \neq h_t(x_i) \end{cases}$$
$$= \frac{D_t(i)}{Z_t} \exp(-\alpha_t y_i h_t(x_i))$$

where Z_t = normalization factor $\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right) > 0$

1

• final classifier:

•
$$H_{\text{final}}(x) = \operatorname{sign}\left(\sum_{t} \alpha_t h_t(x)\right)$$

Toy Example

weak classifiers = vertical or horizontal half-planes

Round 1

α₁=0.42

Round 2

Round 3

ε₃=0.14 α₃=0.92

Final Classifier

Analyzing the Training Error

[with Freund]

- Theorem:
 - write ϵ_t as $\frac{1}{2} \gamma_t$ [γ_t = "edge"]
 - then

training error(H_{final}) $\leq \prod_{t} \left[2\sqrt{\epsilon_t(1-\epsilon_t)} \right]$ $= \prod_{t} \sqrt{1-4\gamma_t^2}$ $\leq \exp\left(-2\sum_{t} \gamma_t^2\right)$

- so: if $\forall t : \gamma_t \ge \gamma > 0$ then training $\operatorname{error}(H_{\text{final}}) \le e^{-2\gamma^2 T}$
- AdaBoost is adaptive:
 - does not need to know γ or T a priori
 - can exploit $\gamma_t \gg \gamma$

Boosting block diagram

Boosting with specialists

- Specialists predict only when they are confident.
- In addition to {-1,+1} specialists use 0 to indicate no-prediction.
- As boosting allows both positive and negative weights: we restrict attention to specialists that output {0,1}.

Weak Rule: $h_t: X \to \{0,1\}$ Label: $y \in \{-1,+1\}$ Training set: $\{(x_1,y_1,1), (x_2,y_2,1), \dots, (x_n,y_n)\}$

$$F_{0}(x) = 0$$

for $t = 1..T$
$$w_{i}^{t} = \exp(-y_{i}F_{t-1}(x_{i}))$$

Get h_{t} from weak – learner
$$\alpha_{t} = \frac{1}{2}\ln\left(\epsilon + \sum_{i:h_{t}(x_{i})=1,y_{i}=1}w_{i}^{t}\right) / \left(\epsilon + \sum_{i:h_{t}(x_{i})=1,y_{i}=-1}w_{i}^{t}\right)$$

$$F_{t} = F_{t-1} + \alpha_{t}h_{t}$$

- x = input, a scalar,
- y = output, -1 or +1
- $(x_1,y_1),(x_2,y_2), \dots, (x_n,y_n) = \text{training set}$
- $F_{t-1} =$ Strong rule after t-1 boosting iterations.
- h_t = Weak rule produced at iteration t

- $F_{t-1} =$ Strong rule after t-1 boosting iterations.
- h_t = Weak rule produced at iteration t

- $F_{t-1} =$ Strong rule after t-1 boosting iterations.
- h_t = Weak rule produced at iteration t

- $F_{t-1} =$ Strong rule after t-1 boosting iterations.
- h_t = Weak rule produced at iteration t

Margins

Fix a set of weak rules: $\vec{h}(x) = (h_1(x), h_2(x), \dots, h_T(x))$

Represent the i'th example x_i with outputs of the weak rules: \vec{h}_i

Labels: $y \in \{-1,+1\}$ Training set: $(\vec{h}_1, y_1), (\vec{h}_2, y_2), \dots, (\vec{h}_n, y_n)$

Goal: Find a weight vector $\vec{\alpha} = (\alpha_1, \dots, \alpha_T)$ that minimizes number of training mistakes

Boosting as gradient descent

Adaboost as gradient descent

Logitboost as gradient descent

Also called Gentle-Boost and Logit Boost, Hastie, Freedman & Tibshirani

Noise resistance

- Adaboost:
 - perform well when a achievable error rate is close to zero (almost consistent case).
 - Errors = examples with negative margins, get very large weights, can overfit.
- Logitboost:
 - Inferior to adaboost when achievable error rate is close to zero.
 - Often better than Adaboost when achievable error rate is high.
 - Weight on any example never larger than 1.

Gradient-Boost / AnyBoost

- A general recipe for learning by incremental optimization
- Applies to any (differentiable) loss function.

labeled example is (x, y) (can be anything).

prediction is of the form: $F_t(x) = \sum_{i=1}^t \alpha_i h_i(x)$ Loss: $L(F_t(x), y)$ Total Loss so far is: $\sum_{j=1}^n L(F_{t-1}(x_j), y_j)$ Weight of example (x, y): $\frac{\partial}{\partial z} L(F_{t-1}(x) + z, y)$

- At each iteration:
 - calc example weights
 - call weak learner with weighted example
 - Add generated weak rule to create new rule: $F_t = F_{t-1} + \alpha_t h_t$

Styles of weak learners

• Everything in between (neural networks, Nearest neighbors, Naive Bayes,.....)

Alternating Decision Trees

Joint work with Llew Mason

An alternating decision tree

Example: Medical Diagnostics

- **Cleve** dataset from UC Irvine database.
- •Heart disease diagnostics (+1=healthy,-1=sick)
- •13 features from tests (real valued and discrete).
- •303 instances.

Adtree for Cleveland heart-disease diagnostics problem

Cross-validated accuracy

Learning algorithm	Number of splits	Average test error	Test error variance
ADtree	6	17.0%	0.6%
C5.0	27	27.2%	0.5%
C5.0 + boosting	446	20.2%	0.5%
Boost Stumps	16	16.5%	0.8%

Applications of Boosting

Applications of Boosting

- Academic research
- Applied research
- Commercial deployment

Academic research

% test error rates

Database	Other	Boosting	Error reduction
Cleveland	27.2 (DT)	16.5	39%
Promoters	22.0 (DT)	11.8	46%
Letter	13.8 (DT)	3.5	74%
Reuters 4	5.8, 6.0, 9.8	2.95	~60%
Reuters 8	11.3, 12.1, 13.4	7.4	~40%

Schapire, Singer, Gorin 98

Applied research

- "AT&T, How may I help you?"
 - Classify voice requests
 - Voice -> text -> category
 - Fourteen categories
 - Area code,
 - AT&T service,
 - billing credit,
 - calling card,
 - collect,
 - competitor

- competitor,
- dial assistance,
- directory,
- how to dial,
- person to person,
- rate,
- third party,
- time charge

Example transcribed sentences

- Yes I'd like to place a collect call long distance please > collect
- Operator I need to make a call but I need to bill it to my office > third party
- Yes I'd like to place a call on my master card please > calling card
- I just called a number in Sioux city and I musta rang the wrong number because I got the wrong party and I would like to have that taken off my bill bill bill bill bill bill

Weak rules generated by "boostexter"

Results

- 7844 training examples – hand transcribed
- 1000 test examples
 hand / machine transcribed
- Accuracy with 20% rejected
 Machine transcribed: 75%
- Hand transcribed: 90%

Commercial deployment

- Distinguish business/residence customers
- Using statistics from call-detail records
- Alternating decision trees
 - Combines very simple rules
 - Can over-fit, cross validation used to stop

Massive datasets (for 1997)

- 260M calls / day
- 230M telephone numbers
 - Label unknown for $\sim 30\%$
- Hancock: software for computing statistical signatures.
- 100K randomly selected training examples,
- ~ 10 K is enough
 - Training takes about 2 hours.
 - Generated classifier has to be both accurate and efficient

Alternating tree for "buizocity"

Alternating Tree (Detail)

Positive predictions ⇔ Residences Negative predictions ⇔ Businesses

Precision/recall graphs

Accuracy

Face Detection

Viola and Jones / 2001

Face Detection / Viola and Jones

Face Detection as a Filtering process

Classifier is Learned from Labeled Data

- Example: 28x28 image patch
- Label: Face / Non face

- 5000 faces, 10⁸ non faces
- Faces are normalized
 - Scale, translation
 - Rotation remains...

Image Features

"Rectangle filters"

Similar to Haar wavelets Papageorgiou, et al.

$$h_t(x_i) = \begin{cases} 1 & \text{if } f_t(x_i) > \theta_t \\ 0 & \text{otherwise} \end{cases}$$

Very fast to compute using "integral image".

60,000×100 = 6,000,000 Unique Binary Features

Combined using adaboost

Cascaded boosting

- Features combined using Adaboost
 - Find best weak rule by exhaustive search.
 - Ran for 2 days on a 250 node cluster
- For detection, features combined in a cascade:

- Runs in real time, 15 FPS, on laptop

Paul Viola and Mike Jones

Summary

- Boosting is a computational method for learning accurate classifiers
 - Resistance to over-fit explained by margins
 - Boosting has been applied successfully to a variety of classification problems