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Decision Trees / Discrete Variables

Mass Temperature explosion

1 100 -1

3.4 945 -1

10 32 -1

11.5 1202 +1
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Decision trees
• Popular because very flexible and easy to interpret. 

• Learning a decision tree = finding a tree with small 
error on the training set.  

1.  Start with the root node. 

2.  At each step split one of the leaves 

3.  Repeat until a termination criterion.



Which node to split?
• We want the children to be more “pure” than the 

parent. 

• Example:  

• Parent node is 50%+, 50%-. 

• Child nodes are (90%+,10%-),(10%+,90%-) 

• How can we quantify improvement in purity?



First approach:  
minimize error

P(+1) =  Probability of label +1 in parent node.
P(A)+ P(B) = 1 Probability of each one of the children
P(+1| A),P(+1| B) = Probability of label +1 condition on each of the children
P(+1) = P(+1| A)P(A)+ P(+1| B)P(B)

A

yesno

Parent

B

At Parent: if P(+1) > P(−1)  then: predict +1
                Else: predict -1
Error rate = min(P(+1),P(−1)) = min(P(+1),1− P(+1))

At node A: if P(+1| A) > P(−1| A)  then: predict +1
                Else: predict -1
Error rate = min(P(+1| A),1− P(+1| A))

At node B: If P(+1| B) > P(−1| B)  then: predict +1
                  Else: predict -1
Error rate = min(P(+1| B),1− P(+1| B))

Combined error of A and B:
P(A)min(P(+1| A),1− P(+1| A))+ P(B)min(P(+1| B),1− P(+1| B))



The problem with 
classification error.

Define err(p) = min(p,1− p)
error rate at parent - error rate at children

= err(P(+1))− P(A)err P(+1| A)( )+ P(B)err P +1| B( )( )( )
We also that P(+1) = P(+1| A)P(A)+ P(+1| B)P(B)

Therefor if P(+1| A) > 1
2

 and P(+1| B) > 1
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                  or  P(+1| A) < 1
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 and P(+1| B) < 1
2

⎡
⎣⎢

⎤
⎦⎥

Then the change in the error is zero.



The problem with 
classification error (pictorially)

P(+1| A) = 0.7, P(+1) = 0.8, P(+1| B) = 0.9



Fixing the problem

P(+1| A) = 0.7, P(+1) = 0.8, P(+1| B) = 0.9

instead of err(p) = min(p,1− p) use   H (p)
2

= − 1
2
p log2 p + (1− p)log2 (1− p)( )



Any strictly convex function 
can be used

H (P) =
p log p + (1− p)log(1− p)

Circle(p) =

1/ 4 − (p −1/ 2)2

Gini(p) =
p(1− p)



Decision tree learning 
algorithm

• Learning a decision tree = finding a tree with small 
error on the training set.  

1.  Start with the root node. 

2.  At each step split one of the leaves 

3.  Repeat until a termination criterion.



The splitting step
• Given: current tree. 

• For each leaf and each feature,  

• find all possible splitting rules (finite because data 
is finite). 

• compute reduction in entropy 

• find  leaf X feature X split rule the minimizes entropy. 

• Add selected rule to split selected leaf.



Enumerating splitting rules
• If feature has a fixed, small, number of values. then 

either: 

• Split on all values (Location is beach/prison/ski-slope) 

• or Split on equality to one value (location = beach) 

• If feature is continuous (temperature) then either: 

• Sort records by feature value and search for best split. 

• or split on parcentiles: 1%,2%,….,99%



Splitting on percentiles
• Suppose data is in an RDD with 100 million examples.  

• sorting according to each feature value is very expensive. 

• Instead: use Sample(false,0.00001).collect() to get a sample of 
about 10,000 examples. 

• sort the sample (small, sort in head node). 

• pick examples at location 100,200,… as boundaries. Call those 
feature values T1,T2,T3,… ,T99 

• Broadcast boundaries to all partitions. 

• Each partition computes it’s contribution to  P(+1|Ti ≤ f ≤ Ti+1)



Pruning trees
• Trees are very flexible. 

• A “fully grown” tree is one where all leaves are “pure”, i.e. are all +1 
or all -1. 

• A fully grown tree has training error zero. 

• If the tree is large and the data is limited, the test error of the tree is 
likely to be high = the tree overfits the data. 

• Statisticians say that trees are “high variance” or “unstable” 

• One way to reduce overfitting is “pruning” which means that the 
fully grown tree is made smaller by “pruning” leaves that have have 
few examples and contribute little to the training set performance.



Bagging
• Bagging, invented by Leo Breiman in the 90s, is a 

different way to reduce the variance of trees. 

• Instead of pruning the tree, we generate many trees, 
using randomly selected subsets of the training data. 

• We predict using the majority vote over the trees. 

• A more sophisticated method to reduce variance, 
that is currently very popular, is “Random Forests” 
about which we will talk in a later lesson.


