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Intrinsic and extrinsic 
dimensions

•Extrinsic: Dimension as a video frame: 600x400
•Intrinsic: Dimension as a mechanical system:  1

Dimension ~ number of degrees of freedom
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Intrinsic dimension

• Suppose we have a uniform distribution over some 
domain.

• We partition it into n cells.

• The “Diameter” ε of the partition is the maximal 
distance between two points belonging to the same 
cell.

• As n increases, ε decreases, but at what rate?

• Lets look at some simple examples.



A line segment
0 1 n=2

ε=1/2



A line segment
0 1 n=2

ε=1/2

n=4
ε=1/4



A line segment
0 1 n=2

ε=1/2

n=4
ε=1/4

n=8
ε=1/8



A line segment
0 1 n=2

ε=1/2

n=4
ε=1/4

n=8
ε=1/8

n=16
ε=1/16



A line segment
0 1 n=2

ε=1/2

n=4
ε=1/4

n=8
ε=1/8

n=16
ε=1/16

General rule:   ε=1/n
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general formula ε = 2
n

  or n = 2
ε2
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A 3d set

n = 1

ε = 3

n = 27

ε = 3
3

n = 125

ε = 3
5

general formula ε = 3
n3

  or n = 3 3
ε3
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General dependence of number of 
elements on diameter

ε = max diameter
n =  number of cells
d =  dimension of space

General Formula:   n = C
εd

Alternatively:  logn = logC + d log1
ε

We can use the last equation 
            to define the dimension of a dataset
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Estimating intrinsic 
dimension

logn = logC + d log1
ε

Two Scales: (n1,ε1),(n2,ε2 ); n1 < n2, ε1 > ε2

log n2

n1

= d log ε1
ε2

d = logn2 − logn1

logε1 − logε2
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Estimating the dimension

log10 ε1 − log10 ε4 = 0.90

blob : log10 n4 − log10 n1 = 1.70

line : log10 n4 − log10 n1 = 0.99

dimension of line = 0.99
0.90

= 1.10 ≈1

dimension of blob= 1.70
0.90

= 1.89 ≈ 2
d = − logn2 − logn1

logε2 − logε1



Estimating using 
kmeans++



Estimating using 
kmeans++

• Add representatives using the K-means++ 
rule.



Estimating using 
kmeans++

• Add representatives using the K-means++ 
rule.

• After adding a representative, estimate the 
average square distance.



Estimating using 
kmeans++

• Add representatives using the K-means++ 
rule.

• After adding a representative, estimate the 
average square distance.

d = logn2 − logn1
log ε1 − log ε2

= 2 logn2 − logn1
logε1 − logε2



rotating hand
http://vasc.ri.cmu.edu/idb/html/motion/hand/index.html

http://vasc.ri.cmu.edu/idb/html/motion/hand/index.html


Rotating hand dimension 
estimation

33

37

0 6

2*6/4 = 3



Swiss Roll



Swiss Roll dimension estimation

11.5

18.5

0 6.5

2*7/6.5 ~ 2
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Tea-pot dimension estimation











Signal Processing



Normal Heart



Anomalous Heart
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Integer and fractional 
dimensions

• We saw dimensions 1,2,3,…. 

• can there be fractional dimensions?
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Koch Snowflake

εi =
1
3i

ni = 3× 4
i

ni = 3×
1
εi

⎛
⎝⎜

⎞
⎠⎟

log4
log3

=dimension
=1.26

i=0

i=3i=2

i=1

Snowflake corresponds to  i→∞
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Variations on a theme

• Partition count can be defined in many ways

• Housdorff dimension: max distance between 2 points in the same cell

• VQ: Average distance to representative.

• Epsilon-cover: all points are at a distance of at most epsilon from a 
representative.

• One can use grids, circles, triangles,line segments ….

• In most cases they all converge to the same number!
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d=1.25

How many squares of size 1/2i it takes to cover the 
British coastline?
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Using line segments: how many line segments of length 
1/2i it takes to trace the British coastline?



d=1.25

Using line segments: how many line segments of length 
1/2i it takes to trace the British coastline?



A comparative study of 
coastlines

Only slopes are significant!



Plants



Plants

d btwn 1 and 2
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Dimensions for different tree types
Boccio and Bastian 2011

http://www.andreasbastian.com/fractal/fractal.html

Original (color) preprocessed

http://www.andreasbastian.com/fractal/fractal.html


The nile from the air.



More examples

Examples of objects with 
different Hausdorff Dimension:
http://en.wikipedia.org/wiki/List_of_fractals_by_Hausdorff_dimension

http://en.wikipedia.org/wiki/List_of_fractals_by_Hausdorff_dimension


Application to gesture 
recognition



Facial Motion Capture - Avatar



Motion Capture - Avatar

• Intrinsic dimension=number of degree of freedom < number 
of muscles in the human face: around 23.

• 23 markers suffice to capture all expressions!
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2007

• Viseme ~ simple model using 11 DoF (Degrees of freedom)
• expresseme ~ Using additional codewords to detect extremal expressions
• Goal of work: complement speech signal to improve language recognition.



Emotions and facial 
expressions



Human facial expressions are universal,  
not learned

Paul Ekman / 1963 / New Guinnea



Human/ape facial 
expressions



https://www.youtube.com/watch?v=R6galodflTQ

https://www.youtube.com/watch?v=R6galodflTQ


Different notions of 
dimension and low-D 

embeddings
• PCA (Linear dimension)

• Locally near Embedding

• Differential Geometry

• Doubling / Haussdorf dimension

• RP-trees



Eigen-Faces



Weinberger & Saul / 2006
Locally Linear Embedding (LLE)



PCA



PCA



PCA



PCA
If variance is dominated by
the d largest eigen-values 
then set has intrinsic 
dimension d



PCA
If variance is dominated by
the d largest eigen-values 
then set has intrinsic 
dimension d

What can we do if set is on d-dim manifold
that is not affine?



PCA
If variance is dominated by
the d largest eigen-values 
then set has intrinsic 
dimension d

What can we do if set is on d-dim manifold
that is not affine?
Partition space into small regions in which the set is 
approximately affine.



Manifold dimension
• Differentiable manifold dimension: dimension of 

local tangent space.

• local, infinitesimally small regions. Requires 
smoothness. Hard to use for sampled data.

http://mathinsight.org/dynamical_system_idea
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Doubling dimension

• Similar to Hausdorff dimension.

• Doubling dimension of set S is d if: 

• For any ball B of radius r

• Intersection of set S and B can be covered by 
at most 2^d balls of radius r/2.

• Global, all scales, does not require smoothness.

• More general than manifold dimension.
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Dimension can depend 
on location



Haussdorff vs. PCA

• With PCA we can find a low dimensional 
representation (eigen-vectors explaining 
90% of variance). But only for a linear 
mapping.

• With Hausdorff dimension we can identify 
arbitrary low dimensional structure, but 
there is no coordinate system.

• Can we combine the two?



Data
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Partition using grid



0
0

1

1

PCA in each cell
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00 1

1

• Green ellipses: First eigenvector 
explains > X% of variance in cell. 
- we are done.

• Orange ellipses: First 
eigenvector explains < X% of 
variance in cell - subdivide cell.   

• In high dimensions data can be 
divided very unequally among 
the cells. -> leads to non-
uniform accuracy.

• We need a better way to divide 
cells.
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Balanced space partitioning using KD-
Trees

• Goal: partition space into regions with similar 
number of examples in each.

• KD-trees: 

• Choose a coordinate at random.

• Partition the data at the median.

• repeat for leaves.

• Works well for low-dimensional spaces.

• Works poorly for data with low intrinsic 
dimension embedded in a high dimensional 
space.

• If dimension is D, then D levels are required to 
half the max-diameter of the cells.

• D=20 -> 220 >1,000,000 cells to reduce the 
diameter from 1 to 1/2. 

points=data,       circles=centroids.
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Random-Projection trees
• Goal: partition space into regions with similar number 

of examples in each.

• AND create shallow trees if data has low intrinsic 
dimension.

• RP-trees: 

• Choose a direction uniformly at random.

• Partition the data at the median.

• repeat for leaves.

• Works well for datasets with low covariance 
dimension. Even if embedded in a high dimensional 
space.

• If covariance dimension is d, then d levels are 
required to half the max-diameter of the cells.
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Splitting a set with low 
covariance dimension

• “optimal” split - orthogonal to largest eigen-vector.

• Split on random direction - almost optimal with constant 
probability.
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theoretical properties 
of RP-trees.

• Space: R^D

• Measure of progress: average cell diameter

• Tree-structured VQ: average diameter halved every D tree 
levels

• Data of intrinsic dimension d<<D

• RP-tree: average diameter halved  
every d tree levels (with constant probability)

Dasgupta & Freund, STOC08
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Problem: put an unordered set of images in 
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Using RP-trees to represent 
high-dimensional  data

• Goal: map each data point to a localized 
PCA projection.

• Identify the sufficiently linear pieces. 
(percent variance explained)

• Combine representations from different 
nodes along the path.















Modeling the manifold 
of handwritten digits

• Using the MNIST digit dataset.

• We use RP-trees to model one digit at a 
time.

• Can be a useful pre-processing step for 
digit recognition.



RP-tree for the digit 1



2d distribution of 1



KD-tree vs. RP-tree 
performance
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Unexplained variance vs. tree depth



Another  Application of 
RP trees



• Controlling a PTZ camera using audio 
triangulation

• Learning low dimensional manifolds from 
sampled data.

• http://www.cse.ucsd.edu/~yfreund/cameraman/index.html

Automatic Cameraman





Beamforming basics

Arrays allow us to F O CUS on a source...these techniques are called
beamformers.
T he signal arrives with a delay ✓ ij between microphones i and j.
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Calibration process

• Goal: map measured delays to pan-tilt direction of camera.

• Training data: 

• High-correlation delay for each microphone pair (21)

• Camera pan+tilt (2)

delay 1,2 delay 1,3 delay 2,3 . . . pan tilt

9±2 35±1 ? 77±2 31±2

13±2 30±2 50±20 80±2 33±2
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The delay manifold

• 7 microphones

• 21 microphone pairs

• 2 camera coordinates: pan,tilt

• Together: 23 dimensional space

• Data lies (close to) a smooth 3 dimensional manifold.

• If we can learn manifold from data  
we can map delay vector to (pan,tilt)



Delay manifold for laboratory setup



Mapping of Hallway using top 2 eigenvectors
For one node of RP-tree.
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Summary I

• Dimensionality reduction / Lossy compression are methods 
for reducing data without losing much of the information.

• PCA is the most popular method, but it can only find linear 
mappings.  We say that PCA find a k-dimensional 
representation if >X% of the variance is explained by the top 
k eigen-vectors. Equivalently, the top k eigen-values sum to 
>X% of the total variance.

• PCA dimension is a global concept.
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• Vector quantization is generic but it only 
finds a partition,  
not a mapping into new coordinates. 

• Scaling dimension / Haussdorf dimension 
/ Metric dimension: characterizes the 
rate of increase in the number of 
partition as the radius/diameter of the 
parts decreases.

logn = logC + d log1
ε

log n2
n1

= d log ε1
ε2

d =
log n2

n1
log ε1
ε2
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Summary 3

• Low dimensional manifold: a subset of the 
space that is defined by a set of constraints.

• Not a statistical concept

• The local dimension of the manifold is 
defined by the tangent hyperplane at that 
point.

• Dimension is an infinitesimal concept.
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Local covariance 
dimension

• A local but not an infinitesimal concept.

• Perform PCA on the data that is in a ball.

• RP-Trees - a space-partitioning data 
structure that performs well (as opposed 
to KD-trees) when the intrinsic dimension 
is low.
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