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HOTING

Dimension ~ number of degrees of freedom

* Extrinsic: Dimension as a video frame: 600x400
*Intrinsic: Dimension as a mechanical system: |
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Intrinsic dimension

Suppose we have a uniform distribution over some
domain.

We partition it into n cells.

The “Diameter” € of the partition is the maximal
distance between two points belonging to the same
cell.

As n increases, € decreases, but at what rate?

Lets look at some simple examples.
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A line segment

General rule: €=1/n
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general formula € =

3.3

3
€

S by

or n =



General dependence of number of
elements on diameter



General dependence of number of
elements on diameter

e = max diameter
n = number of cells

d = dimension of space

General Formula: n = %
€

1
Alternatively: logn=1logC +dlog-
€



General dependence of number of
elements on diameter

e = max diameter
n = number of cells

d = dimension of space

General Formula: n = %
€

1
Alternatively: logn=1logC +dlog-
€

We can use the last equation
to define the dimension of a dataset
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Estimating intrinsic
dimension

1
logn=1logC +dlog—
€
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Estimating the dimension
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Estimating the dimension
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Estimating the dimension
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Estimating the dimension
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Estimating using
kmeans++

® Add representatives using the K-means++
rule.

® After adding a representative, estimate the
average square distance.
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log\/7 log\/g lc)ge1 —loge,




rotating hand

http://vasc.ri.cmu.edu/idb/html/motion/hand/index.h
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Rotating hand dimension
estimation
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Swiss Roll dimension estimation
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Tea-pot dimension estimation
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https:/arxiv.org/abs/1702.08638
Single-lead f-wave extraction using diffusion geometry

John Malik!*, Neil Reed'*, Chun-Li Wang?>', Hau-tieng Wu!*
! Department of Mathematics, University of Toronto, Toronto, Ontario, Canada
2 Cardiovascular Division, Department of Internal Medicine, Chang Gung Memorial

Hospital, Linkou Medical Center, Taoyuan, Taiwan

4 College of Medicine, Chang Gung University, Taoyuan, Taiwan
4 Mathematics Division, National Center for Theoretical Sciences, Taipei, Taiwan

*: these two authors contribute equally to this work. ": co-correspondence.



Atrial fibrillation (Af) is the most commonly sustained arrhythmia encountered in clinical
practice and continues to receive considerable research interest. Interventions such as rhythm
or rate control improve Af-related symptoms and may preserve cardiac function. However,
current Af management guidelines provide no treatment recommendations that take the
various mechanisms and patterns of Af into account [25]21] and therefore tests are developed
that quantify Af and guide its management. The fibrillation wave (f-wave) related analysis
of the surface ECG or long-term Holter monitoring for Af patients is undoubtedly one of the
most challenging questions encountered in the clinical practice [36, 3]; for example, what is
the mechanism underlying the initiation, termination, and maintenance of paroxysmal Af [23],
and what is the outcome of Af treatment [29]? A summary of the available information on
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Integer and fractional
dimensions

® \We saw dimensions 1,2,3,....

® can there be fractional dimensions?
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Variations on a theme

® Partition count can be defined in many ways
® Housdorff dimension: max distance between 2 points in the same cell
® VQ:Average distance to representative.

® Epsilon-cover:all points are at a distance of at most epsilon from a
representative.

® One can use grids, circles, triangles,line segments ....

® In most cases they all converge to the same number!
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Using line segments: how many line segments of length
|/2! it takes to trace the British coastline?

d=1.25




A comparative study of
coastlines

Only slopes are significant!
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Dimensions for different tree types
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Dimensions for different tree types

Boccio and Bastian 2011 +
http://www.andreasbastian.com/fractal/fractal.html § ..'.
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Dimensions for different tree types
Boccio and Bastian 201 |

http://www.andreasbastian.com/fractal/fractal.html

| as Hausdorff Dimension of Four Different Tree Species

1.8 F

175 F

1.7 F

Hausdorff Dirnension

1.65 F

1.6

Q. shumardii Q. bicolor T. tomentosa C.ovalka


http://www.andreasbastian.com/fractal/fractal.html

The nile from the air-




More examples
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Hausdorff_ Dimension

Examples of objects W|th

different Hausdorff Dimension:
http://en.wikipedia.org/wiki/List _of fractals by Hausdorff dimension
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Application to gesture
recognition



Facial Motion Capture - Avatar




Motion Capture - Avatar

® Intrinsic dimension=number of degree of freedom < number
of muscles in the human face: around 23.

® 23 markers suffice to capture all expressions!



Degrees of freedom of facial movements in face-to-face
conversational speech
Gérard Bailly, Frédéric Elisei, Pierre Badin, Christophe Savariaux 2007
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Figure 1: Comparing prediction errors of facial shapes using a model built using 52 speech visemes (light gray) with one

incorporating 102 additional expressemes (dark gray), for a series of selected video sequences. The mean error lowers from 1.7 to

1.3 pixels. Frames shown at the top are generating the most important prediction errors of the speech-only model.
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Degrees of freedom of facial movements in face-to-face

conversational speech

Gérard Bailly, Frédéric Elisei, Pierre Badin, Christophe Savariaux 2007
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Degrees of freedom of facial movements in face-to-face
conversational speech
Gérard Bailly, Frédéric Elisei, Pierre Badin, Christophe Savariaux 2007
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Figure 1: Comparing prediction errors of facial shapes using a model built using 52 speech visemes (light gray) with one
incorporating 102 additional expressemes (dark gray), for a series of selected video sequences. The mean error lowers from 1.7 to
1.3 pixels. Frames shown at the top are generating the most important prediction errors of the speech-only model.

® Viseme ~ simple model using | | DoF (Degrees of freedom)
® expresseme ~ Using additional codewords to detect extremal expressions
® Goal of work: complement speech signal to improve language recognition.



Emotions and facial
expressions

happiness

A real smile always includes:
(D crow’s feet wrinkles

.2 pushed up cheeks
movement from

muscle that
orbits the eye

sadness

(D drooping upper
_____ eyelids

E-(@loslng focus in eyes

;-====(3) slight pulling down
: of lip corners

contempt

(@ lip corner tightened
and raised on only
one side of face

surprise
| g

(@ eyes widened

(3 mouth open

anger

5-@"“ glare
(3 narrowing of the lips

disgust
I {Dnose wrinkling

(@ upper lip raised

i L.(3eyebrows raised and
pulled together

(@ raised upper eyelids

(@ tensed lower eyelids

@ ips slightly stretched
hovlzontally back to ears



Human facial expressions are universal,

not learned
Paul Ekman / 1963 / New Guinnea

() show me what your face would lock like if you  (b) show me what your face would look ke Hyou (€} show me what your facewould lock dke £ you met
were about to fight leamed your chid had died frienck



Human/ape facial
expressmns

AU 10+12+ AU 22+25+26 AU 12+25+26 AU 6+10+ AU 17+24
12+16+25+27




eMOTleNT Solutions v

Emotions drive spending.
Upload Videos. Compare Results. Pick Winners.

\;.mmwADTESTFOCUSGROUP @N'TEMPT Emotient AdPanel

E‘*“’ 2as INNGER; > A e Get to the truth about your advertising.
\ e Emotion measurement integrated into an online survey.

e Demographic insights — quickly and at scale.

LEARN MORE

Emotient Analytics
e |Improve your ads, media, products or events.
e Upload videos of customers or an audience “in the experience”.

e Get on-demand analysis of attention, engagement and emotions.

VIEW DEMO

https://www.youtube.com/watch?v=RégalodflTQ



https://www.youtube.com/watch?v=R6galodflTQ

Different notions of
dimension and low-D
embeddings

PCA (Linear dimension)

Locally near Embedding
Differential Geometry

Doubling / Haussdorf dimension

RP-trees



Eisen-Faces
Beyond Eigenfaces: Probabilistic Matching for Face Recognition

Baback Moghaddam Wasiuddin Wahid and Alex Pentland
Mitsubishi Electric Research Laboratory MIT Media Laboratory

Figure 6: “Dual” Eigenfaces: (a) Intrapersonal, (b) Extraper-
sonal



Weinberger & Saul / 2006
Locally Linear Embedding (LLE)
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PCA

If variance is dominated by
the d largest eigen-values
then set has intrinsic
dimension d

What can we do if set is on d-dim manifold
that is not affine?

Partition space into small regions in which the set is
approximately affine.



Manifold dimension

® Differentiable manifold dimension: dimension of
local tangent space.

® |ocal, infinitesimally small regions. Requires
smoothness. Hard to use for sampled data.
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Manifold dimension

® Differentiable manifold dimension: dimension of
local tangent space.

® |ocal, infinitesimally small regions. Requires
smoothness. Hard to use for sampled data.
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® Similar to Hausdorff dimension.
® Doubling dimension of set S is d if:
® For any ball B of radius r

® |Intersection of set S and B can be covered by
at most 2\d balls of radius r/2.

® Global, all scales, does not require smoothness.
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Dimension can depend
on scale
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Dimension can depend
on location

d=2



Haussdorff vs. PCA

® With PCA we can find a low dimensional

representation (eigen-vectors explaining
90% of variance). But only for a linear

mapping.

® With Hausdorff dimension we can identify
arbitrary low dimensional structure, but
there is no coordinate system.

® Can we combine the two!?
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PCA in each cell







® Green ellipses: First eigenvector
explains > X% of variance in cell.
- we are done.
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Green ellipses: First eigenvector
explains > X% of variance in cell.
- we are done.

Orange ellipses: First
eigenvector explains < X% of
variance in cell - subdivide cell.

In high dimensions data can be
divided very unequally among
the cells. -> leads to non-
uniform accuracy.

We need a better way to divide
cells.



Manifolds

L Intrinsic dimension

| ocal covariance dimension

» S{x V. is afinite set in R” (a sample).

» Mean vector: ;1 = 1 5"V, x. Assume wlog ;: = 0
- v C— 15N T,

» Covariance matrix: C = 5 > ;"4 X' X;

» {v;}7, are eigen-vectors of C with eigen-values
0‘1220%2...20%

» S has covariance dimension (d. ¢) if

» S has local covariance dimension (d. ¢) in the ball B(x, r) if
S N B(x, r) has covariance dimension (d. ¢).
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Balanced space partitioning using KD-

Trees

Goal: partition space into regions with similar
number of examples in each.

KD-trees:

® Choose a coordinate at random.

® Partition the data at the median.

® repeat for leaves.

Works well for low-dimensional spaces.

Works poorly for data with low intrinsic
dimension embedded in a high dimensional
space.

If dimension is D, then D levels are required to
half the max-diameter of the cells.

D=20 -> 229>],000,000 cells to reduce the
diameter from | to |/2.

points=data,

circles=centroids.

O
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Random-Projection trees

® (Goal: partition space into regions with similar number
of examples in each.

e AND create shallow trees if data has low intrinsic
dimension.

® RP-trees:

® Choose a direction uniformly at random.

e Partition the data at the median.
® repeat for leaves.

® Works well for datasets with low covariance
dimension. Even if embedded in a high dimensional
space.

® If covariance dimension is d, then d levels are
required to half the max-diameter of the cells.
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Splitting a set with low
covariance dimension
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® “optimal” split - orthogonal to largest eigen-vector.

® Split on random direction - almost optimal with constant
probability.
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theoretical properties
of RP-trees.

® Space:R"D
® Measure of progress: average cell diameter

® Tree-structuredVQ:average diameter halved every D tree
levels

® Data of intrinsic dimension d<<D

® RP-tree:average diameter halved
every d tree levels (with constant probability)
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Using RP-trees to represent
high-dimensional data

® (Goal: map each data point to a localized
PCA projection.

® |dentify the sufficiently linear pieces.
(percent variance explained)

® Combine representations from different
nodes along the path.





















Modeling the manifold
of handwritten digits

® Using the MNIST digit dataset.

® We use RP-trees to model one digit at a
time.

® Can be a useful pre-processing step for
digit recognition.



RP-tree for the digit 1
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KD-tree vs. RP-tree
performance
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Unexplained variance vs. tree depth

Unexplained Variance versus Depth
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Another Application of
RP trees



Automatic Cameraman

® Controlling a PTZ camera using audio
triangulation

® | earning low dimensional manifolds from
sampled data.

® http://www.cse.ucsd.edu/~yfreund/cameraman/index.html
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Beamforming basics

o Arrays allow us to FOCUS on a source...these techniques are called
beamformers.
o The signal arrives with a delay Aj; between microphones i and |.
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Calibration process

® Goal: map measured delays to pan-tilt direction of camera.

® Training data:

® High-correlation delay for each microphone pair (21)

® (Camera pan+tilt (2)

delay 1,2 | delay 1,3 delay 2,3 pan tilt
912 35+l ? 7712 | 3112
1312 3012 50£20 3012 | 3312
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The delay manifold

/7 microphones

2| microphone pairs

2 camera coordinates: pan,tilt

Together: 23 dimensional space

Data lies (close to) a smooth 3 dimensional manifold.

If we can learn manifold from data
we can map delay vector to (pan,tilt)



Delay manifold for laboratory setup
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Mapping of Hallway using top 2 eigenvectors
For one node of RP-tree.
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® Dimensionality reduction / Lossy compression are methods
for reducing data without losing much of the information.

® PCA is the most popular method, but it can only find linear
mappings. We say that PCA find a k-dimensional
representation if >X% of the variance is explained by the top
k eigen-vectors. Equivalently, the top k eigen-values sum to
>X% of the total variance.

® PCA dimension is a global concept.



An old video

® https://www.youtube.com/watch!?
v=rrOy6LplL940
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Summary 2

1
® Vector quantization is generic but it only logn=1logC +dlog-

finds a partition,
not a mapping into new coordinates.

log =d log
® Scaling dimension / Haussdorf dimension L !
| Metric dimension: characterizes the
rate of increase in the number of log—
partition as the radius/diameter of the d= ke
parts decreases. loge—l

6
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Summary 3

Low dimensional manifold: a subset of the
space that is defined by a set of constraints.

Not a statistical concept

The local dimension of the manifold is
defined by the tangent hyperplane at that
point.

Dimension is an infinitesimal concept.
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L ocal covariance
dimension

® A local but not an infinitesimal concept.
® Perform PCA on the data that is in a ball.

® RP-Trees - a space-partitioning data
structure that performs well (as opposed
to KD-trees) when the intrinsic dimension

is low.
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