Gradients & Regression



A system of linear equations

Find x,,x,,x, such that
a, X, +a,x, +a,;x;, = b,
Ay X, + Ay X, + Ay Xy =D,

Ay X, + A3y X, + A35X5 = b,

Can also be written as
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a, dy, dy Xy

dy Ay Ay X, |=| b,

\a31 Az, ds3 N x3) \b3)

Or as: AX — b



To solve, invert the matrix

Ax=b < x=A"D

* Inverse might not exist

e System can be
— under-determined (infinite set of solutions)
— Or over determined (no solution).



Approximately solving
over-determined systems

There 1s no x that satisfies Ax=Db

Instead, find x that minimizes || Ax—b ||,

 How to find the minimum?
* |In one dimensional problem: set derivative to zero.

* In multi-dimensional case, set gradient to zero.



A function of two variables

The swface defined by fix,y) = 9 - x° - ¥.




Restricting the function to the variable x




Computing the partial derivative wrt x




Gradient = the partial derivative wrt all
coordinates
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Computing the gradient symbolically

Jd , o
Vf = <8_xf8_yf>
example: f(x,y)=9—x" -y’
Vf =(-2x,-2y)

Setting the gradient to zero we find that the maximum
is at (x,y)=(0,0)



Exactly minimizing square error

There 1s no x that satisfies Ax=Db

Instead, find x that minimizes H Ax—-Db sz

Find x such that V_[|Ax—Db sz =0

V. ||Ax-b| =2A"(Ax~b)=0

x=(A"A)'A" b

Pseudo-inverse of A




When the number of examples is large

 The size of the matrix A
is number of variables X number of examples

e Exact solution is not practical.
* The alternative: stochastic gradient descent.



Review: the gradient

f:R? — R is a smooth function from R’ to R
The gradient of f at the point X, denoted Vf(X)

is a vector pointing in the direction of steepest ascend (increase) of f
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The gradient Vf(X) can be calculated using partial derivatives:

Af (%) Af (%) af(5c’)>

Vf(i)=<

’ 90 e
dx,  dx, 0x,



Optimization by Gradient Ascent

e Start at a randomly chosen starting point
e Take a small step in the direction of the gradient
* Repeat

* Converges to a local maximum (gradient zero).

*  Which local maximum depends on starting point
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Deterministic & Stochastic
Gradient Descent

N
Find x that minimizes H Ax—-Db sz = Z(aix - b, )2

=1

N N
-b|, =V (ax-b) =Y 2(ax-b)a,
i=1 i=1

Taking a step in direction opposite of gradient moves x
towards the minimum.

Deterministic gradient Descent: sum over all examples and
then take a step.

Stochastic Gradient Descent: take a small step after each
example.

Mini-Batch: Take a step after summing M>1 examples.




LinearRegressionWithSGD

X, = Z(a - b, )a

step/ i=1* error
learning \_ -~ Y
rate mini-batch

LinearRegressionWithSGD(data,it,s,miniB,init)

data — The training data, an RDD of LabeledPoint.

iterations — The number of iterations (default: 100).

step — The step parameter used in SGD (default: 1.0).

miniBatchFraction — Fraction of data to be used for each SGD iteration (default: 1.0).
initialWeights — The initial weights (default: None).



Learning rate and initial weights

SGD is guaranteed to converge to a local
minimum, if the learning rate (step) is
sufficiently small.

If step size too large — SGD can diverge.

If step size too small — convergence will take
many iterations.

Initial weights can help start the process close
to the minimum.



Why Minibatch?

Updating separately in each executor will cause the
estimate of x for different partitions to diverge.

Alternatively, communicating each update to all
executors creates a communication and
synchronization bottleneck.

Minibatch: each partition calculates a sum using a
fraction of it’s partition. The sums are combined and all

executors receive the same updated x

Smaller mini-batches — faster convergence, but more
communication.



Mini-Batch SGD

Machine 1 Machine 2 Machine 3 Machine 4

Sum and update state vector




Learning rate matters!
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Batch gradient descent

Stochastic

gradient descent

data sol: sol.t (Y00 examplos, 2 gaussinm)
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Stochastic gradient descent
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[LeCun et al, "Efficient BackProp~, Neural Networks: Tricks of the Trade, 1998;
Bottou, "Stochastic Learning”, Sldes fram a talk in Tubmgen, 2003)
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Training set and Test set

 We are usually interested in finding models
that fit well unseen data.

* To evaluate the effectiveness of the learning
algorithm we separate the data randomly into
two parts:

— Training set: used to find best model
— Test set: used to see if model generalizes well.



Regularization

* When the data is high dimensional and noisy, decreasing the

training error too much will often cause the test error to
Increase.

* This is called overfitting.

 One way to avoid overfitting is to “regularize” the trained
model.

Find x that minimizes H Ax-Db sz + M ‘XH

L2: Ridge Regression: |[x|| " = Y X

L1: Lasso: [x], = Y |x|
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Additional Parameters for

LinearRegressionWithSGD

regParam — The regularizer parameter (default: 0.0).
regType —
The type of regularizer used for training our model.
Allowed values: o “[1” for using L1 regularization (lasso),
o “l2” for using L2 regularization (ridge),
o None for no regularization
(default: None)

intercept — Boolean parameter which indicates the use or not of the augmented representation for training data (i.e.
whether bias features are activated or not, default: False).

validateData — Boolean parameter which indicates if the algorithm should validate data before training. (default:
True)

convergenceTol — A condition which decides iteration termination. (default: 0.001)



