
Gradients	&	Regression	



A	system	of	linear	equa6ons	
Find x1, x2, x3  such that
a11x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a23x3 = b2

a31x1 + a32x2 + a33x3 = b3
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Can	also	be	wri:en	as	

Ax = bOr	as:		



To	solve,	invert	the	matrix	

Ax = b ⇔ x = A−1b

•  Inverse	might	not	exist	
•  System	can	be		
– under-determined	(infinite	set	of	solu6ons)	
– Or	over	determined	(no	solu6on).	



Approximately	solving		
over-determined	systems	

There is no x that satisfies Ax = b

Instead, find x that minimizes Ax − b 2

•  How	to	find	the	minimum?	
•  In	one	dimensional	problem:	set	deriva6ve	to	zero.	
•  In	mul6-dimensional	case,	set	gradient	to	zero.	



A	func6on	of	two	variables	



Restric6ng	the	func6on	to	the	variable	x	



Compu6ng	the	par6al	deriva6ve	wrt	x	



Gradient	=	the	par6al	deriva6ve	wrt	all	
coordinates	



Compu6ng	the	gradient	symbolically	

∇f = ∂
∂x

f , ∂
∂y

f

example:    f (x, y) = 9 − x2 − y2

∇f = −2x,−2y
Setting the gradient to zero we find that the maximum
is at x, y = 0,0



Exactly	minimizing	square	error	

There is no x that satisfies Ax = b

Instead, find x that minimizes Ax − b 2

2

Find x such that ∇x Ax − b 2

2 = 0

∇x Ax − b 2

2 = 2AT (Ax − b) = 0

 
x = (ATA)-1AT

Pseudo-inverse of A
! "# $# b



When	the	number	of	examples	is	large	

•  The	size	of	the	matrix	A		
is	number	of	variables	X	number	of	examples	

•  Exact	solu6on	is	not	prac6cal.	
•  The	alterna6ve:	stochas6c	gradient	descent.	



Review:	the	gradient	

 

f :Rd → R is a smooth function from Rd  to R
The gradient of f  at the point  !x,  denoted ∇f (!x)
is a vector pointing in the direction of steepest ascend (increase) of f

 

The gradient  ∇f (!x) can be calculated using partial derivatives:

∇f (!x) = ∂ f (!x)
∂x1

, ∂ f (
!x)
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∂xd



Op6miza6on	by	Gradient	Ascent	
•  Start	at	a	randomly	chosen	star6ng	point	

•  Take	a	small	step	in	the	direc6on	of	the	gradient		
•  Repeat	

•  Converges	to	a	local	maximum	(gradient	zero).	
•  Which	local	maximum	depends	on	star6ng	point	

Star6ng	
	point	

Local	
Maximum	

global	
Maximum	



Determinis6c	&	Stochas6c		
Gradient	Descent	

Find x that minimizes Ax − b 2
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∑ aix − bi( )2

∇x Ax − b 2
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∑2 aix − bi( )ai
•  Taking	a	step	in	direc6on	opposite	of	gradient	moves	x	
towards	the	minimum.	

•  Determinis.c	gradient	Descent:	sum	over	all	examples	and	
then	take	a	step.	

•  Stochas.c	Gradient	Descent:	take	a	small	step	aVer	each	
example.	

•  Mini-Batch:	Take	a	step	aVer	summing	M>1	examples.	



LinearRegressionWithSGD	

 

xt+1 = xt − η
step/
learning
rate

!
i=1

M

∑ (at , i ⋅xt − bt )
error

" #$ %$
at , i

mini-batch
" #$$$ %$$$

LinearRegressionWithSGD(data,it,s,miniB,init)



Learning	rate	and	ini6al	weights		

•  SGD	is	guaranteed	to	converge	to	a	local	
minimum,	if	the	learning	rate	(step)	is	
sufficiently	small.	

•  If	step	size	too	large	–	SGD	can	diverge.	
•  If	step	size	too	small	–	convergence	will	take	
many	itera6ons.	

•  Ini6al	weights	can	help	start	the	process	close	
to	the	minimum.		



Why	Minibatch?	

•  Upda6ng	separately	in	each	executor	will	cause	the	
es6mate	of	x	for	different	par66ons	to	diverge.	

•  Alterna6vely,	communica6ng	each	update	to	all	
executors	creates	a	communica6on	and	
synchroniza6on	bo:leneck.	

•  Minibatch:	each	par66on	calculates	a	sum	using	a	
frac6on	of	it’s	par66on.	The	sums	are	combined	and	all	
executors	receive	the	same	updated	x	

•  Smaller	mini-batches	–	faster	convergence,	but	more	
communica6on.		



Mini-Batch	SGD	

Machine	1	 Machine	2	 Machine	3	 Machine	4	

Sum	and	update	state	vector	
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Learning	rate	ma:ers!	





Training	set	and	Test	set	

•  We	are	usually	interested	in	finding	models	
that	fit	well	unseen	data.	

•  To	evaluate	the	effec6veness	of	the	learning	
algorithm	we	separate	the	data	randomly	into	
two	parts:	
– Training	set:	used	to	find	best	model	
– Test	set:	used	to	see	if	model	generalizes	well.	



Regulariza6on	
•  When	the	data	is	high	dimensional	and	noisy,	decreasing	the	

training	error	too	much	will	oVen	cause	the	test	error	to	
increase.	

•  This	is	called	overficng.	
•  One	way	to	avoid	overficng	is	to	“regularize”	the	trained	

model.		

Find x that minimizes Ax − b
2

2 + λ x

L2: Ridge Regression: x 2
2 = xi

2

i
∑

L1: Lasso: x 1 = xi
i
∑



Addi6onal	Parameters	for		
	LinearRegressionWithSGD	


