
Storage	Locality
and	counting	words

Counting	the	words	
in	a	long	text

• 218718 words	long
• 17150 different	words
• How	many	times	does	
each	word	occur?

Task:	count	the	number	of	occurrences	of	
each		word	in	very	long	text.
• Input: Call	me	Ishmael.	Some	years	ago--never	mind	how	long	
precisely—having	little	or	no	money	in	my	purse,	and	nothing	
particular	to	interest	me	onshore,	I	thought	I	would	sail	…
• Moby	dick:	about	1.3MByte
• Desired	output:
• Call:	354
• Me:	53423
• Ismael:	1322
• ….

Simple	solution
• Iterate	over	words.	Update	counter	for	current	word.

Lets	use	a	sorted	list

5

8

Sort-based	solution

Sort	words

Iterate	over	sorted	list

Count	occurrences	of	same	word

Switch	on	word	boundry

Summary

• Sorting	improves	memory	locality	for	word	counting
• Improved	memory	locality	reduces	run-time
• Why?	Because	computer	memory	is	organized	in	a	hierarchy.

Storage	Latency
Small	and	Fast	vs.	Large	and	Slow

CPU

A

C

B

= *

A

C

B

TI
M
E

Latencies

1. Read	A
2. Read	B
3. C=A*B
4. Write	C

With	big	data,	most	of	the	latency	
is	memory	latency	(1,2,4),	not		
computation	(3)

• Main	Memory	(RAM)

• Spinning	disk

• Remote	computer

Latency	2

Latency	1

Latency	3

Latency	4

To
ta
l	L
at
en

cy

Storage	Types

CPU

A

C

B

= *

A

C

B

NON-LOCAL	STORAGE	ACCESS

middle

50…
00

50…
01

50…
02

…
…
.

…
…
.

…
…
.

middle
50…

00
50…

01
50…

02
…
…
.

…
…
.

…
…
.

CPU
A=0
For	i in	range(100000):

A+=	X[i]

For	i in	range(100000):
A-=	Y[i]

X

Y

LOCAL	STORAGE	ACCESS

Summary

• The	major	source	of	latency	in	data	analysis	is	reading	and	writing	to	
storage
• Different	types	of	storage	offer	different	latency,	capacity	and	price.
• Big	data	analytics	revolves	around	methods	for	organizing	storage	and	
computation	in	ways	that	maximize	speed	while	minimizing	cost.
• Next,	Caches	and	the	memory	Hierarchy.	

Caches	and	the
Memory	Hierarchy	

Latency,	size	and	price	of	computer	memory

Given	a	budget,	we	need	to	trade	off

$10:	Fast	& Small $10:	Slow	& Large

Cache:	The	basic	idea

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

12 67

50 51

52 53

32 33

cpu

Memory

Cache

Fast	&	Small

Slow	& Large

Cache	Hit

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

12 67

50 51

52 53

32 33

cpu

Memory

Cache
Cache	Hit

Cache	Miss

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

12 67

50 51

52 53

32 33

cpu

Memory

Cache

Cache	Miss	Service:	1)	Choose	byte	to	drop

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

12 67

50 51

52 53

32 33

cpu

Memory

Cache

67

Cache	Miss	Service:	2)	write	back

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

12

50 51

52 53

32 33

cpu

Memory

Cache

67

Cache	Miss	Service:	3)	Read	In

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

12

50 51

52 53

32 33

cpu

Memory

Cache

47

Access	Locality

• The	cache	is	effective	If	most	accesses	are	hits.	
• Cache	Hit	Rate	is	high.

• Temporal	Locality:	Multiple	accesses	to	same address	within	a	short	
time	period

Spatial	locality

• Spatial	Locality:	Multiple	accesses	to	close-together	addresses	in	
short	time	period.
• The	difference	between	two	sums.
• Counting	words	by	sorting

• Benefiting	from	spatial	locality
• Memory	is	partitioned	into	Blocks/Lines	rather	than	single	bytes.
• Moving	a	block	of	memory	takes	much	less	time	than	moving	each	byte	
individually.
• Memory	locations	that	are	close	to	each	other	are	likely	to	fall	in	the	same	
block.
• Resulting	in	more	cache	hits.

Cache:	Lines	/	Blocks

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

50 51

52 53

32 33

34 35

cpu

Memory

Cache

Supports	Spatial	locality

Unsorted	word	count	/	poor	locality

• Consider	the	memory	access	to	the	dictionary	D:
• Count	without	sort:
D[the]=12332,…,D[but]=943,………,D[vernacular]=10,……….....,D[for]=..
• Temporal	locality	for	very	common	words	like	“the”
• No	spatial	locality

sorted	word	count	/	good	locality

Entries	to	D	are	added	one	at	a	time.
1. D[lines]=33
2. D[lines]=33,	D[lingered]=5
3. D[lines]=33,	D[lingered]=5,	D[lingering]=8
Assuming	new	entries	are	added	at	the	end,	this	gives	spatial	locality.
Spatial	locality	makes	code	run	faster

Summary

• Caching	reduces	storage	latency	by	bringing	relevant	data	close	to	the	
CPU.
• This	requires	that	code	exhibits	access	locality:
• Temporal	locality:	Accessing	the	same	location	multiple	times
• Spatial	locality:	Accessing	neighboring	locations.

The	memory	Hierarchy

The	Memory	Hierarchy

• Real	systems	have	a	several	levels	storage	types:
• Top	of	hierarchy:	Small	and	fast	storage	close	to	CPU
• Bottom	of	Hierarchy:	Large	and	slow	storage	further	from	CPU

• Caching	is	used	to	transfer	data	between	different	levels	of	the	
hierarchy.
• Programmer	/	compiler	is	oblivious:
• The	hardware	provides	an	abstraction	:	memory	looks	like	like	a	single	large	
array.

• But	performance	depends	on	program’s	access	pattern.

The	Memory	Hierarchy

Computer	clusters	
extend	the	memory	hierarchy	

• A	data	processing	cluster	is	
simply	many	computers	linked	
through	an	ethernet connection.
• Storage	is	shared	
• Locality:	Data	to	reside	on	the	
computer	that	will	use	it.
• “Caching”	is	replaced	by	
“Shuffling”
• Abstraction	is	spark	RDD.

CPU	
(Registers)

L1
Cache

L2
Cache

L3
Cache

Main
Memory

Disk
Storage

Local
Area	
Network

Size	(bytes) 1KB 64KB 256KB 4MB 4-16GB 4-16TB 16TB –
10PB

Latency 300ps 1ns 5ns 20ns 100ns 2-10ms 2-10ms

Block size 64B 64B 64B 64B 32KB 64KB 1.5-64KB

Sizes	and	latencies	in	a	typical	memory	hierarchy.

12	
orders	of	
magnitude

6		
orders	of	
magnitude

Summary

• Memory	Hierarchy:	combining	storage	banks	with	different	latencies.
• Clusters:	multiple	computers,	connected	by	ethernet,	that	share	their	
storage.

A	short	history	of	affordable
massive	computing.

Super	computers

• Cray,	Deep	Blue,	Blue	Gene	…
• Specialized	hardware
• Very	expensive	
• created	to	solve	specialized	important	problems

Data	Centers

Data	Centers
• The	physical	aspect	of	”the	cloud”
• Collection	of	commodity	computers
• VAST	number	of	computers		(100,000’s)
• Created	to	provide	computation	for	large	and	small	organizations.
• Computation	as	a	commodity.

Making	History:	Google	2003

• Larry	Page	and	Sergey	Brin develop	a	method	for	storing	very	large	
files	on	multiple	commodity computers.
• Each	file	is	broken	into	fixed-size	chunks.
• Each	chunk	is	stored	on	multiple	chunk	servers.
• The	locations	of	the	chunks	is	managed	by	the	master

HDFS:	Chunking	files

File	1

File	2

File	1,	Chunk	1

File	1,	Chunk	2

File	2, Chunk	1

File	2,	Chunk	2

Split

Split

File	1,	Chunk	1
Copy	1

File	1,	Chunk	2
Copy	1

File	2, Chunk	1
Copy	1

File	2,	Chunk	2
Copy	1

File	1,	Chunk	1
Copy	2

File	1,	Chunk	2
Copy	2

File	2, Chunk	1
Copy	2

File	2,	Chunk	2
Copy	2

Copy

Copy

File	1,	Chunk	2
Copy	3

HDFS:	Distributing	Chunks

File	1,	Chunk	1
Copy	1

File	1,	Chunk	2
Copy	1

File	2, Chunk	1
Copy	1

File	2,	Chunk	2
Copy	1

File	1,	Chunk	1
Copy	2

File	1,	Chunk	2
Copy	2

File	2, Chunk	1
Copy	2

File	2,	Chunk	2
Copy	2

File	1,	Chunk	2
Copy	3

Properties	of	GFS/HDFS

• Commodity	Hardware:	Low	cost	per	byte	of	storage.
• Locality: data	stored	close	to	CPU.
• Redundancy: can	recover	from	server	failures.
• Simple	abstraction: looks	to	user	like	standard	file	system	(files,	
directories,	etc.)	Chunk	mechanism	is	hidden.

Redundancy

Parallelism
Assume	File	1	
contains	a	list	
of	numbers.

Serial	computation:	
do	everything	on	
one	computer

Parallel	method:	
process	each	chunk	
on	a	separate	
computer,	then	
combine.

Task:
Sum	all	of	the	
numbers	in	file	1

Locality Because	of	redundancy	it	is	likely	
that	at	any	moment	there	exists	an	
available	worker	that	contains	the	
chunk	the	master	wishes	to	process.

Map-Reduce

• HDFS	is	a	storage	abstraction	
• Map-Reduce is	a	computation abstraction	that	works	well	with	HDFS
• Allows	programmer	to	specify	parallel	computation	without	knowing	
how	the	hardware	is	organized.
• We	will	describe	Map-Reduce,	using	Spark,	in	a	later	section.

Spark

• Developed	by	Matei Zaharia ,	amplab,	2014
• Hadoop	uses	shared	file	system (disk)
• Spark	uses	shared	memory – faster,	lower	latency.
• Will	be	used	in	this	course

• Recall	word	count	by	sorting,	
we	will	redo	it	using	map-reduce!

Summary

• Big	data	analysis	is	performed	on	large	clusters	of	commodity	
computers.
• HDFS	(Hadoop	file	system):		break	down	files	to	chunks,	make	copies,	
distribute	randomly.
• Hadoop	Map-Reduce:	a	computation	abstraction	that	works	well	with	
HDFS
• Spark:	Sharing	memory instead	of	sharing	disk.

