
Map ReduceMap Reduce



Map: square each itemMap: square each item
list L=[0,1,2,3]
Compute the square of each item
output: [0,1,4,9]



TraditionalTraditional Map-ReduceMap-Reduce
## For Loop
O=[]
for i in L:
    O.append(i*i)

## List Comprehension
[i*i for i in L]

map(lambda x:x*x, L)



Reduce: compute the sumReduce: compute the sum

A list L=[3,1,5,7]
Find the sum (16)



TraditionalTraditional Map-ReduceMap-Reduce
## Use Builtin
sum(L)

## for loop
s=0
for i in L:
    s+=i

reduce(lambda (x,y): x+y, L)



Map + ReduceMap + Reduce
list L=[0,1,2,3]
Compute the sum of the squares
Note the differences



TraditionalTraditional Map-ReduceMap-Reduce
## For Loop
s=0
for i in L:
   s+= i*i
## List comprehension
sum([i*i for i in L])

reduce(lambda x,y:x+y, \\
        map(lambda i:i*i,L))



The Wrong wayThe Wrong way

 

Map, Reduce operations should not depend on:
Order of items in the list (commutativity)
Order of operations (Associativity)

It is this independence that allows parallel computation.

reduce(lambda x,y:x+y*y)



Order independenceOrder independence
The result of map or reduce does not depend on the
order



computation order of a sumcomputation order of a sum

5 7 3 1 3

12

15

16

19

For loop order

5 7 3 1 3

parallel order

10 4

14

19

Result should not depend on order



Why Order Independence?Why Order Independence?
 

Computation order can be chosen by compiler/optimizer.
Allows for parallel computation of sums of subsets.

Modern hardware calls for parallel computation but
parallel computation is very hard to program.

Using map-reduce programmer exposes to the compiler
opportunities for parallel computation.


