Partitioners



Spark Partitioners

e Each RDD is divided into partitions.
= One partition per worker (core)

e After manipulations (such as filter()) some partitions can
shrink to zero and some might be very large

® This means that future work is not balanced across
the workers.

e |f RDD consists of (key,value) pairs we can use a
partitioner to redistribute the items among the workers



Types of partitioners

e HashPartitioner(n): divide the keys into n groups at
random. Divide the pairs according to their keys

e RangePartitioner(n): each partition corresponds to
a range of key values, so that each range contains
approximately the same number of items (keys).

e Custom Partitioner:
define a partitioner that maps key K to integer I.
n= number of partitions.
pair with key K placed in partition | mod n



Custom Partition Example

In [10]: data = sc.parallelize(|'1l’
print data.collect()
c = data.count()

wp = data.partitionBy(c/2,lambda k: int(k))
print wp.map(lambda t: t[0]).glom().collect()

, 2', '3', '4', '5"]).map(lambda x: (x,Xx))

l(‘l.l .l')l (.2'I '2.)1 (.3'I '3.)l ('4'1 '4.)I ('S'I .5')]
(c'2, "4°), ('1°, '3°, '5']]



glom()

e The RDD abstraction does not allow direct access to
subcollections of an RDD.

e glom() breaks the abstraction. It transforms the local
partition into a list which can be operated on by standard
python operations.

e A single partition can be operated on as a regular
python list.

e RDD.glom() returns a new RDD in which each elementis a
list containing all of the elements in a single partition.



glom() : returns an RDD with one array per partition.

Allows the worker to access all data in it's partition.

A=sc.parallelize(range(1000000))\
.map(lambda x: (2*x,x)) \
.partitionBy(10) \

.glom()

print A.getNumPartitions()

def variation(B):
d=0
if len(B)>1:
for i in range(len(B)-1):
d+=abs (B[i+1][1]-B[i][1])

return (B[0][0],len(B),d)
else:

return(None)

10

[(0, 200000, 999995), None, (2, 200000, 999995), None,

(4, 200000, 999995), None, (6, 200000, 999995), None,
(8, 200000, 999995), None]




