
Partitioners

Spark Partitioners
Each RDD is divided into partitions.

One partition per worker (core)
After manipulations (such as filter()) some partitions can
shrink to zero and some might be very large

This means that future work is not balanced across
the workers.

If RDD consists of (key,value) pairs we can use a
partitioner to redistribute the items among the workers

Types of partitioners
HashPartitioner(n): divide the keys into n groups at
random. Divide the pairs according to their keys
RangePartitioner(n): each partition corresponds to
a range of key values, so that each range contains
approximately the same number of items (keys).
Custom Partitioner:
define a partitioner that maps key K to integer I.
n= number of partitions.
pair with key K placed in partition I mod n

Custom Partition Example

glom()
The RDD abstraction does not allow direct access to
subcollections of an RDD.

glom() breaks the abstraction. It transforms the local
partition into a list which can be operated on by standard
python operations.

A single partition can be operated on as a regular
python list.

RDD.glom() returns a new RDD in which each element is a
list containing all of the elements in a single partition.

glom() : returns an RDD with one array per partition.
Allows the worker to access all data in it's partition.
A=sc.parallelize(range(1000000))\
 .map(lambda x: (2*x,x)) \
 .partitionBy(10) \
 .glom() # One list per key \

print A.getNumPartitions()

def variation(B):
 d=0
 if len(B)>1:
 for i in range(len(B)-1):
 d+=abs(B[i+1][1]-B[i][1]) # access the glomed RDD that is now a list
 return (B[0][0],len(B),d)
 else:
 return(None)

output=A.map(lambda B: variation(B)).collect()
print output
10
[(0, 200000, 999995), None, (2, 200000, 999995), None,
 (4, 200000, 999995), None, (6, 200000, 999995), None,
 (8, 200000, 999995), None]

