RDD commands

plan and (key,value)



Three groups of commands

e Creation: RDD from files, databases, or data on
driver node.

e Transformations: RDD to RDD

e Actions: RDD to data on driver node, databases, files.



Plain RDD

Transformations



A=sc.parallelize(range(4))

B=A.map(lambda x: x-2)
B.collect ()




A=sc.parallelize(range(4))

B.collect ()




A=sc.parallelize(range(4))

B=A.map(lambda x: x-2)
B.collect ()







Plain RDD

Actions



sc.parallelize(range(4)).collect()

[0111213]




A=sc.parallelize(range(4))

A.reduce(lambda x,y: x+y)




(key,Value) RDDs

Transformations



(key,Value) RDDs

Actions



Partitioners



Spark Partitioners

e Each RDD is divided into partitions.

= One partition per worker (core)
= A single partition can be operated on as a regular
python list.

e After manipulations (such as filter()) some partitions can
shrink to zero and some might be very large

® This means that future work is not balanced across
the workers.

e |f RDD consists of (key,value) pairs we can use a
partitioner to redistribute the items among the workers



Types of partitioners

e HashPartitioner(n): divide the keys into n groups at
random. Divide the pairs according to their keys

e RangePartitioner(n): each partition corresponds to
a range of key values, so that each range contains
approximately the same number of items (keys).

e Custom Partitioner:
define a partitioner that maps key K to integer I.
n= number of partitions.
pair with key K placed in partition | mod n



Custom Partition Example

In [10]): data = sc.parallelize(|'l’
print data.collect()
c = data.count()
wp = data.partitionBy(c/2,lambda k: int(k))
print wp.map(lambda t: t[0]).glom().collect()

, ' 2', '3', "4', '5"]).map(lambda x: (x,x))

("1, "1, ('2', '2%), ('3', '3%), ('4', '4'), ('5', '5'))
(('2', '4'1, (1%, 3%, '5'))

r



Creation

sc.parallelize(range(10000))
Parsing text file

Sources of files: local, S3, Web
SparkSQL and Parquet files



