Dimension Reduction using PCA and SVD



Plan of Class

Starting the machine Learning part of the course.

Based on Linear Algebra.

If your linear algebra is rusty, check out the pages on
“Resources/Linear Algebra”

This class will all be theory.

Next class will be on doing PCA in Spark.

HW3 will open on friday, be due the following friday.



Dimensionality reduction

Why reduce the number of features in a data set?
@ It reduces storage and computation time.
® High-dimensional data often has a lot of redundancy.

©® Remove noisy or irrelevant features.

Example: are all the pixels in an image equally informative?
28 x 28 = 784pixels. A vector X € R784

If we were to choose a few pixels to discard,
which would be the prime candidates?

Those with lowest variance...



Eliminating low variance coordinates
Example: MNIST. What fraction of the total variance is contained in the
100 (or 200, or 300) coordinates with lowest variance?
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We can easily drop 300-400 pixels...

Can we eliminate more?

Yes! By using features that are combinations of pixels instead of single
pixels.



Covariance (a quick review)

Suppose X has mean pux and Y has mean puy.

e Covariance
cov(X,Y) =E[(X — pux)(Y — py)] = E[XY] = uxpy

Maximized when X =Y/, in which case it is var(X).
In general, it is at most std(X)std(Y).



Covariance: example 1

cov(X, Y) = E[(X — ux)(Y — py)] = E[XY] = pxpy

x y Pr(xy) px =0

-1 -1 1?3 py = —1/3

11 1/6 _

1 1 1/3 var(X) =1

1 1 1/6 var(Y) :8/9
cov(X,Y)=0

In this case, X, Y are independent. Independent variables always have
zero covariance.



Covariance: example 2

cov(X, ¥) = E[(X — jux)(Y — pv)] = E[XY] — jixpy

x y  Pr(xy)
—1 -10 1/6 px =0
~1 10 1/3
1 -10 1/3
1 10 1/6

py =0
var(X) =1
var(Y) = 100
cov(X,Y)= —10/3

In this case, X and Y are negatively correlated.



Example: MNIST

approximate a digit from class j as the class av-
erage plus k corrections:

Xmpj+ Q) aivi
i=1

e 4i; € R7® class mean vector

® Vii,...,Vj are the principal directions.




The effect of correlation

Suppose we wanted just one feature for the following data.

This is the direction of maximum variance.
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Two types of projection
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Projection: formally

What is the projection of x € RP onto direction u € RP (where ||u|| =1)?

As a one-dimensional value:
P
_ _ Ty _
X-U=U-X=U X= uiX;.
i=1

As a p-dimensional vector:

(x-u)u=uu"x

“Move x - u units in direction u”

What is the projection of x = <§

e The coordinate direction ;7  Answer: 2

e The direction (11>? Answer: —1/+/2

) onto the following directions?



matrix notation |

A notation that allows a simple representation of multiple projections

A vector V € RY can be represented, in matrix notation, as

e A column vector:
Vi
V2

Vd

e A row vector:



matrix notation Il

By convension an inner product is represented by a row vector followed
by a a column vector:

vi
Vo d

(v o wa) | =D wvi
' i=1
Vg

While a column vector followd by a row vector represents an outer
product which is a matrix:

uivi u2vy -0 UmWa

vy UVvp, - UmVp



Projection onto multiple directions
Want to project x € R” into the k-dimensional subspace defined by
vectors uy, ..., ux € RP.

This is easiest when the u;'s are orthonormal:
e They each have length one.

e They are at right angles to each other: u; - u; = 0 whenever i # j
Then the projection, as a k-dimensional vector, is
up T
up
(X u, Xty ..., x ug) = : X
Uy J,

call this UT

As a p-dimensional vector, the projection is

(x - ur)un + (x - u)ug + -+ (x - ug)ug = UUT x.



Projection onto multiple directions: example

Suppose data are in R* and we want to project onto the first two
coordinates.

1 0
0 1 .
Take vectors  u; = ol ©=1, (notice: orthonormal)
0 0
. T Uy (1 0 0 0
Then write U’ = < Uy ) = (0 100
The projection of x € R*, The projection of x as a
as a 2-d vector, is 4-d vector is
UTx= (T "
x2 UUTx = |72
0
0

But we'll generally project along non-coordinate directions.



The best single direction

Suppose we need to map our data x € RP into just one dimension:
X+ u-x for some unit direction u € RP

What is the direction u of maximum variance?

Theorem: Let ¥ be the p x p covariance matrix of X. The variance of
X in direction u is given by uT Zu.

e Suppose the mean of X is € RP. The projection u” X has mean
E(u™X)=u"EX = u"p.
e The variance of u” X is

var(u" X) =E(u"™ X —u"p)?> = E(u" (X — p)(X — p) " u)
=u"E(X —p) (X —p) u=u"Xu.

Another theorem: u' ¥ u is maximized by setting u to the first
eigenvector of ¥. The maximum value is the corresponding eigenvalue.



Best single direction: example
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This direction is the first eigenvector of the 2 x 2 covariance matrix of
the data.



The best k-dimensional projection

Let X be the p x p covariance matrix of X. Its eigendecomposition can
be computed in O(p?) time and consists of:

o real eigenvalues \; > A\, > --- > ),

e corresponding eigenvectors uy, ..., u, € RP that are orthonormal:
that is, each u; has unit length and u; - uj = 0 whenever i # j.

Theorem: Suppose we want to map data X € RP to just k dimensions,
while capturing as much of the variance of X as possible. The best
choice of projection is:

x> (U X, Up - Xy, Uk - X),

where u; are the eigenvectors described above.

Projecting the data in this way is principal component analysis (PCA).



Example: MNIST

Contrast coordinate projections with PCA:

fraction of residual variance
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MNIST: image reconstruction

Reconstruct this original image from its
PCA projection to k dimensions.

k =200 k =150 k =100

20202]2

Q: What are these reconstructions exactly?
A: Image x is reconstructed as UUT x, where U is a p X k matrix whose
columns are the top k eigenvectors of X.




What are eigenvalues and eigenvectors?

There are several steps to understanding these.
@ Any matrix M defines a function (or transformation) x — Mx.

® If M is a p x g matrix, then this transformation maps vector x € R9
to vector Mx € RP.

© We call it a linear transformation because M(x + x") = Mx + Mx'.

® We'd like to understand the nature of these transformations. The
easiest case is when M is diagonal:

2 0 0 X1 2x1
0 -1 0 X2 = —X2
0 0 10 X3 1 0X3
—— ——
M X Mx

In this case, M simply scales each coordinate separately.

® What about more general matrices that are symmetric but not
necessarily diagonal? They also just scale coordinates separately, but
in a different coordinate system.



Eigenvalue and eigenvector: definition

Let M be a p X p matrix.
We say u € RP is an eigenvector if M maps u onto the same direction,

that is,
Mu = \u

for some scaling constant A. This \ is the eigenvalue associated with w.

Question: What are the eigenvectors and eigenvalues of:

2 0 O
M={(0 -1 0]7
0 0 10

Answer: Eigenvectors eg, ex.e3, with corresponding eigenvalues 2, —1, 10.

Notice that these eigenvectors form an orthonormal basis.



Eigenvectors of a real symmetric matrix

Theorem. Let M be any real symmetric p x p matrix. Then M has

e p eigenvalues A1,..., A
e corresponding eigenvectors uy, ..., u, € RP that are orthonormal
We can think of uy,..., up, as being the axes of the natural coordinate

system for understanding M.

Example: consider the matrix

-
-5 =53

and corresponding eigenvalues Ay = 4 and A\, = 2. (Check)

It has eigenvectors



Spectral decomposition

Theorem. Let M be any real symmetric p x p matrix. Then M has
e peigenvalues Aq,..., A,

e corresponding eigenvectors uy,. .., u, € RP that are orthonormal

Spectral decomposition: Here is another way to write M:

T T T A1 0 s 0 uq
0 /\2 tee 0 u»

M=|w wv - u S : :
Ll Ulo o 0y, "

U: columns are eigenvectors . cigenvalues on diagonal Ut

Thus Mx = UAUT x, which can be interpreted as follows:
e UT rewrites x in the {u;} coordinate system
e A is a simple coordinate scaling in that basis

e U then sends the scaled vector back into the usual coordinate basis



Spectral decomposition: example
Apply spectral decomposition to the matrix M we saw earlier:

() -0 )6 9’
8t 690

U A utT

)

71



Principal component analysis: recap

Consider data vectors X € RP.

e The covariance matrix ¥ is a p X p symmetric matrix.

o Get eigenvalues A\ > Xy > --- > A, eigenvectors uy, ..., Up.
® uy,...,Up is an alternative basis in which to represent the data.
e The variance of X in direction u; is ;.
e To project to k dimensions while losing as little as possible of the
overall variance, use x — (x - u1,...,x - Ug).
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Example: personality assessment

What are the dimensions along which personalities differ?

o [exical hypothesis: most important personality characteristics have
become encoded in natural language.

e Allport and Odbert (1936): sat down with the English dictionary
and extracted all terms that could be used to distinguish one
person’s behavior from another's. Roughly 18000 words, of which
4500 could be described as personality traits.

e Step: group these words into (approximate) synonyms. This is done
by manual clustering. e.g. Norman (1967):

Spirit
Talkativeness
Sociability
Sp9ntaneity

Jolly, merry, witty, lively, peppy
Talkative, articulate, verbose, gossipy
o g ial, !
Impul§ive, carefree, playful, zany

Adventure
Energy
Conceit
Vanity
Indiscretion
Sensuality

rowdy, loud,
Brave, venturous, fearless, reckless
Active, assertive, dominant, energetic
Boastful, conceited, egotistical
Affected, vain, chic, dapper, jaunty
Nosey, snoopy, indiscreet, meddlesome
Sexy, passionate, sensual, flirtatious

e Data collection: Ask a variety of subjects to what extent each of

these words describes them.



Personality assessment: the data

Matrix of data (1 = strongly disagree, 5 = strongly agree)

N
O & eS8
ST
Personl1 |4 1 1 2 5 5
Person2 |1 4 4 5 2 1
Person3 |2 4 5 4 2 2

How to extract important directions?

e Treat each column as a data point, find tight clusters
e Treat each row as a data point, apply PCA

e Other ideas: factor analysis, independent component analysis, ...

Many of these yield similar results



What does PCA accomplish?

Example: suppose two traits (generosity, trust) are highly correlated, to
the point where each person either answers “1"” to both or “5" to both.

\/

5
generosity generosity

This single PCA dimension entirely accounts for the two traits.



The “Big Five” taxonomy

Extraversion Agreeableness Conscientiousness Neuroticism Oppenness/Intllect
Low High Low High Low High Low High Low High
-83 Quiet 85 Talkative -52 Faultfinding 87 Sympathetic 58 Careless. 80 Organized -39 Stable* 73 Tense -74 Commonplace 76 Wide interests
-80 Reserved 83 Assertive ~48 Cold 85 Kind 53 Disorderly horou, -35 Calm® 72 Anxious 73 Narrow interests
-75 Shy 82 Active ~45 Uniiendly -0 Fiivolous 78 Planful -21 Contented 72 Nervous -67 Simple
~71 Silent 82 Encraetic -5 Quarrelsome -49 Irresponsible 78 Efficient 14 Unemotional® 71 Moody -5 Shallow.
-67 Withdrawn 52 Outgoing -45 Hard-hearted -40 Slipshot 73 Responsible. 71 Wormying -47 Unintelligent
-6 Retiing 80 Outspoken -38 Unkind -39 Undependable 72 Reliable 68 Touchy
9 Dominan -33 Cruel 37 Forgetful 70 Dependable 64 Fearful
73 Forceful -31 Stem” 68 Conscientious 63 High-strung.
73 Enthusiastic -28 Thankless 66 Precise 63 Self-pityi
68 Show-ol -24 Stingy* 66 Practical Temperamental
68 Sociable 65 Deliberate 59 Unstable
64 Spunl 46 Painstaking 58 Self-punishing
64 Adventurous 26 Cautious 54 Despondent
foisy 51 Emotional

58 Bossy

51 Sensitive

20 Dignified

Many applications, such as online match-making.



Singular value decomposition (SVD)

For symmetric matrices, such as covariance matrices, we have seen:
e Results about existence of eigenvalues and eigenvectors
e The fact that the eigenvectors form an alternative basis
e The resulting spectral decomposition, which is used in PCA
But what about arbitrary matrices M € RP*97?

Any p x g matrix (say p < q) has a singular value decomposition:

b Ty o0 “

M = uy e up . - - .
l 1J\o - o v
p X p matrix U p X p matrix A p X g matrix VT
® uq,...,Up are orthonormal vectors in RP
® vi,...,V, are orthonormal vectors in RY

® 01 >0y > -+ > 0p are singular values



Matrix approximation
We can factor any p x g matrix as M = UWT:

T T o1 -+ O v

M=1w - u : I :
| | 0 - o v
T T o1vi
=|u - u :
Ll
p X p matrix U p x g matrix W7

A concise approximation to M: just take the first k columns of U and
the first k rows of W7, for k < p:

P o

ﬂZ:: up - Uk
i i Ok Vik
N—_——

pxk kxq



Example: topic modeling

Blei (2012):

Topic proportions and
assignments

Topics Documents
gene 0.04
dna 0.02

genetic 001 Seeking Life’s Bare (Genetic) Necessities

How many genes does an [SEEIRISH neg W

SUBVINEY Last week at the genome meeting

here,* twogenome researcherswithradically  University i

required a mere 128 genes. The
L other researcher mapped genes
in a simple parasite and esti
. that for this organism, [

brain 0.04 \

neuron 0.02

nerve 0.01 \hhnuJ\l]u numm don’t
match precisely, those [predictions

- * Genome Mapping and Sequenc- N

COLD SPRING HARBOR, NEW YORK— “are not all that far apart,” especially in
o comparison to the 75,000 in the hu.
e, notes Siv \m\mw W

T
it comim up with mm

different approaches presented complemen- 800
life 0.02 fary views of e hsic genes el orli 450 answerguay be more than just 3
G 0.01 wputeranaly-  numby -
organism 001 mes, concluded  more senomes are
5 BRSNS n be sustained with  sequenced. “Te mag be a way of organt=ime
s, and that the earliestlife fo " explains
128 T -

ing, Cold Spring Harbor, New York,  Stripping down, Computer anaysis yields an i
May 81012 mate of the minimum modern and ancient genomes.

data 0.02 ) o

imber 0,02 SCIENGE » VOL. 272 + 24 MAY 199

computer 0,01 L

T

/




Latent semantic indexing (LSI)

Given a large corpus of n documents:
e Fix a vocabulary, say of V words.

e Bag-of-words representation for documents: each document
becomes a vector of length V/, with one coordinate per word.

e The corpus is an n x V matrix, one row per document.

g « &
‘ é;’v bo%@b ~o°® é}?
Docl1 |4 1 1 0 2
Doc2|0 0 3 1 0
Doc3 |0 1 3 0 O

Let's find a concise approximation to this matrix M.



Latent semantic indexing, cont’d

Use SVD to get an approximation to M: for small k,

——docl— — b6 —
——doc 2 — — O — v,
——doc3— | o |+— 03— :
: : Wy
doc n 0" k X V matrix ¥
n X V matrix M n X k matrix ©

Think of this as a topic model with k topics.
e V; is a vector of length V describing topic j: coefficient W, is large
if word w appears often in that topic.

e Each document is a combination of topics: 0j; is the weight of topic
j in document J.

Document i originally represented by ith row of M, a vector in RV.
Can instead use §; € R¥, a more concise “semantic” representation.



The rank of a matrix

Suppose we want to approximate a matrix M by a simpler matrix M.
What is a suitable notion of “simple”?

e let's say M and M are p x g, where p < q.
o Treat each row of M as a data point in RY.

e We can think of the data as “simple” if it actually lies in a
low-dimensional subspace.

o If the rows lie in k-dimensional subspace, we say that M has rank k.

The rank of a matrix is the number of linearly independent rows.

Low-rank approximation: given M € RP*9 and an integer k, find the
matrix M € RP*9 that is the best rank-k approximation to M.

That is, find M so that
e M has rank <k

e The approximation error -, (M — M;)? is minimized.

We can get M directly from the singular value decomposition of M.



Low-rank approximation
Recall: Singular value decomposition of p x g matrix M (with p < q):
T T [ B 0 %1
M fd Ul PN UP . . - N

AT .

® Uy, ..., Up is an orthonormal basis of R”
® Vvi,...,Vq is an orthonormal basis of RY

® 01 > --- > 0, are singular values

The best rank-k approximation to M, for any k < p, is then

(T T\ [for--0 Vi

M = uy - ug : o :
I I 0 - ok Vi

p X k k X k k x q




Example: Collaborative filtering
Details and images from Koren, Bell, Volinksy (2009).

Recommender systems: matching customers with products.
e Given: data on prior purchases/interests of users
e Recommend: further products of interest

Prototypical example: Netflix.

A successful approach: collaborative filtering.

e Model dependencies between different products, and between
different users.

e Can give reasonable recommendations to a relatively new user.

Two strategies for collaborative filtering:
e Neighborhood methods

e Latent factor methods



Neighborhood methods




Latent factor methods
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The matrix factorization approach

User ratings are assembled in a large matrix M:

o & I

g-av«s"?aéfo

3 & F LS

|5 STF TG
User1 |5 5 2 0 O
User2 |0 0 3 4 5
User3/|0 0 5 0 O

e Not rated = 0, otherwise scores 1-5.
e For n users and p movies, this has size n x p.
e Most of the entries are unavailable, and we'd like to predict these.

Idea: Find the best low-rank approximation of M, and use it to fill in the
missing entries.



User and movie factors

Best rank-k approximation is of the form M ~ UW:

<——userl — — up —>
<— user 2 — — U — T T T
<— user 3 — — u3 —>

Q

[

k X p matrix wT

+—— user n — — u, —

n X p matrix M n X k matrix U

Thus user i's rating of movie j is approximated as
Mi; = uj - w;

This “latent” representation embeds users and movies within the same
k-dimensional space:

e Represent ith user by u; € R¥
e Represent jth movie by w; € R*



Top two Netflix factors

Factor vector 2
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