Pregel: A System for Large-
Scale Graph Processing

Written by G. Malewicz et al. at SIGMOD 2010
Presented by Chris Bunch
Tuesday, October 12,2010

Graphs are hard

® Poor locality of memory access
® Very little work per vertex
® Changing degree of parallelism

® Running over many machines
makes the problem worse

Wednesday, October 13, 2010

State of the Art Today

® VWrite your own infrastructure
® Substantial engineering effort
® Use MapReduce

® |nefficient - must store graph state in
each stage, too much communication
between stages

Wednesday, October 13, 2010

State of the Art Today

® Use a single-computer graph library

® Not scalable ®

® Use existing parallel graph systems

® No fault tolerance ®

Bulk Synchronous
Parallel

® Series of iterations (supersteps)
® Each vertex invokes a function in parallel

® Can read messages sent in previous
superstep

® Can send messages, to be read at the next
superstep

® Can modify state of outgoing edges

Wednesday, October 13, 2010

Compute Model

® You give Pregel a directed graph
® |t runs your computation at each vertex
® Do this until every vertex votes to halt

® Pregel gives you a directed graph back

Wednesday, October 13, 2010

Primitives

® Vertices - first class

® Edges - not

- % -~
) P TTWH
Sl SV 4
0 & ~ |

Wednesday, October 13, 2010

Vertex State Machine

Vote to halt

(]

_/

Message recetved

Wednesday, October 13, 2010

C++ AP

® Your code subclasses Vertex, writes a
Compute method

® Can get/set vertex value
® Can get/set outgoing edges values

® Can send/receive messages

Wednesday, October 13, 2010

C++ AP

® Message passing:

® No guaranteed message delivery order
® Messages are delivered exactly once

® Can send messages to any node

® |f dest doesn’t exist, user’s function is called

Wednesday, October 13, 2010

C++ AP

® Combiners (off by default):

® User specifies a way to reduce many
messages into one value (ala Reduce in MR)

® Must be commutative and associative

® Exceedingly useful in certain contexts (e.g.,
4x speedup on shortest-path compuation)

Wednesday, October 13, 2010

C++ AP

® Aggregators:

® User specifies a function

® Fach vertex sends it a value

® Each vertex receives aggregate(vals)

® (Can be used for statistics or coordination

Wednesday, October 13, 2010

C++ AP

® Jopology mutations:
® Vertices can create / destroy vertices at will
® Resolving conflicting requests:

® Partial ordering: E Remove,V Remove,V
Add, E Add

® User-defined handlers:You fix the
conflicts on your own

Wednesday, October 13, 2010

C++ AP

® |nhput and output:

® Jext file

® Vertices in a relational DB

“ . ré Bk r y = o . AW o »
o= A - by g e s 2w ’ o t . J 3
s TP N H b 4 o o 5 . S -
X ¥ - r-‘-’t\ "N - 00 | ' 4 Y 4 sed . [
. . . 3 Oy B¢ h | et F R e >E -y .

Wednesday, October 13, 2010

Implementation

® Executable is copied to many machines
® One machine becomes the Master

® Coordinates activities
® Other machines become Workers

® Performs computation

Wednesday, October 13, 2010

Implementation

® Master partitions the graph
® Master partitions the input

® |f a Worker receives input that is not for
their vertices, they pass it along

® Supersteps begin

® Master can tell Workers to save graphs

Wednesday, October 13, 2010

Fault Tolerance

® At each superstep S:
® Workers checkpointV, E,and Messages
® Master checkpoints Aggregators

® |[f a node fails, everyone starts over at S

® Confined recovery is under development

® what happens if the Master fails?

The Worker

® Keeps graph in memory
® Message queues for supersteps S and S+
® Remote messages are buffered

® Combiner is used when messages are sent
or received (save network and disk)

Wednesday, October 13, 2010

The Master

® Master keeps track of which Workers own
each partition

® Not who owns each Vertex
® Coordinates all operations (via barriers)

® Maintains statistics and runs a HT TP server
for users to view info on

Wednesday, October 13, 2010

Aggregators

® VWorker passes values to its aggregator

® Aggregator uses tree structure to reduce
vals w/ other aggregators

® Better parallelism than chain pipelining

® Final value is sent to Master

Wednesday, October 13, 2010

PageRank in Pregel

class PageRankVertex
: public Vertex<double, void, double> {
public:
virtual void Compute(Messagelterator* msgs) {
if (superstep() >= 1) {
double sum = 0;
for (; !msgs->Done(); msgs->Next())
sum += msgs->Value();
*MutableValue() =
0.15 / NumVertices() + 0.85 * sum;

}

if (superstep() < 30) {

const int64 n = GetOutEdgelterator().size();
SendMessageToAllNeighbors(GetValue() / n);

} else {
VoteToHalt();

Wednesday, October 13, 2010

Shortest Path in Pregel

class ShortestPathVertex
: public Vertex<int, int, int> {
void Compute(Messagelterator* msgs) {
int mindist = IsSource(vertex_id()) ? 0 : INF;
for (; !msgs->Done(); msgs->Next())
mindist = min(mindist, msgs->Value());
if (mindist < GetValue()) {
*MutableValue() = mindist;
OutEdgelterator iter = GetOutEdgelterator();
for (; !iter.Done(); iter.Next())
SendMessageTo(iter.Target (),
mindist + iter.GetValue());

}
VoteToHalt();

Wednesday, October 13, 2010

Evaluation

® 300 multicore commodity PCs used
® Only running time is counted
® Checkpointing disabled
® Measures scalability of VWorker tasks
® Measures scalability w.r.t. # of Vertices

® in binary trees and log-normal trees

Wednesday, October 13, 2010

Runtime (seconds)

—0— g
100 200 300 400 500 600 700 800

Number of worker tasks

Figure 7: SSSP—1 billion vertex binary tree: vary-
ing number of worker tasks scheduled on 300 multi-
core machines

Wednesday, October 13, 2010

)
e
=
QO
O
O
&z
O
s
.s
E
e

oG 10G 15G 20G 25G 30G 35G 40G 45G 50G

Number of vertices

Figure 8: SSSP—binary trees: varying graph sizes
on 800 worker tasks scheduled on 300 multicore ma-
chines

Wednesday, October 13, 2010

Runtime (seconds)

100M 200M 300M 400M 500M 600M 700M 800M S00M 1G

Number of vertices

Figure 9: SSSP—Ilog-normal random graphs, mean
out-degree 127.1 (thus over 127 billion edges in the
largest case): varying graph sizes on 800 worker
tasks scheduled on 300 multicore machines

Wednesday, October 13, 2010

Current / Future Work

® Graph must fit in RAM - working on spilling
over to / from disk

® Assigning vertices to machines to optimize
traffic is an open problem

® VWant to investigate dynamic re-
partitioning

Conclusions

® Pregel is production-ready and in use
® Usable after a short learning curve
® Vertex centric is not always easy to do

® Pregel works best on sparse graphs w /
communication over edges

® Can’t change the API - too many people
using it!

Wednesday, October 13, 2010

Related VWork

® Hama - from the Apache Hadoop team
® BSP model but not vertex centric ala Pregel

® Appears not to be ready for real use:
Hama Wiki ‘oo
o GettingStarted

FrontPage RecentChanges FindPage HelpContents | GettingStarted

Info Attachments More Actions:

NOTE: Hama is not ready yet!!

Wednesday, October 13, 2010

29

Related VWork

® Phoebus, released last week on github
® Runs on Mac OS X
® Cons (as of this writing):

® Doesn’t work on Linux

® Must write code in Erlang (since Phoebus
is written in it)

Wednesday, October 13, 2010

Thanks!

® Jo my advisor, Chandra Krintz

® ToG le for thi Pap€
Py - <0 i - - -t f g b - 4) r
i CS el RS - SR Yo N o L =s) Pl ae RN R Rt L 2 JER T et A H e St TR R
(i ”‘ b ol 2 S et R et N A ORI g6 < Ll B It Rk o el 2l s 2

ALY
& -

o ""- At Do !\c’ = -
Rl A AL R, B T

B A

Wednesday, October 13, 2010

