
Pregel: A System for Large-
Scale Graph Processing

Written by G. Malewicz et al. at SIGMOD 2010
Presented by Chris Bunch
Tuesday, October 12, 2010

1

Wednesday, October 13, 2010



Graphs are hard

• Poor locality of memory access

• Very little work per vertex

• Changing degree of parallelism

• Running over many machines 
makes the problem worse

2

Wednesday, October 13, 2010



State of the Art Today

• Write your own infrastructure

• Substantial engineering effort

• Use MapReduce

• Inefficient - must store graph state in 
each stage, too much communication 
between stages

3

Wednesday, October 13, 2010



State of the Art Today

• Use a single-computer graph library

• Not scalable ☹

• Use existing parallel graph systems

• No fault tolerance ☹

4

Wednesday, October 13, 2010



Bulk Synchronous 
Parallel

• Series of iterations (supersteps)

• Each vertex invokes a function in parallel

• Can read messages sent in previous 
superstep

• Can send messages, to be read at the next 
superstep

• Can modify state of outgoing edges

5

Wednesday, October 13, 2010



Compute Model

• You give Pregel a directed graph

• It runs your computation at each vertex

• Do this until every vertex votes to halt

• Pregel gives you a directed graph back

6

Wednesday, October 13, 2010



Primitives

• Vertices - first class

• Edges - not

• Both can be dynamically created and 
destroyed

7

Wednesday, October 13, 2010



Vertex State Machine

8

Wednesday, October 13, 2010



C++ API

• Your code subclasses Vertex, writes a 
Compute method

• Can get/set vertex value

• Can get/set outgoing edges values

• Can send/receive messages

9

Wednesday, October 13, 2010



C++ API

• Message passing:

• No guaranteed message delivery order

• Messages are delivered exactly once

• Can send messages to any node

• If dest doesn’t exist, user’s function is called

10

Wednesday, October 13, 2010



C++ API

• Combiners (off by default):

• User specifies a way to reduce many 
messages into one value (ala Reduce in MR)

• Must be commutative and associative

• Exceedingly useful in certain contexts (e.g., 
4x speedup on shortest-path compuation)

11

Wednesday, October 13, 2010



C++ API

• Aggregators:

• User specifies a function

• Each vertex sends it a value

• Each vertex receives aggregate(vals)

• Can be used for statistics or coordination

12

Wednesday, October 13, 2010



C++ API

• Topology mutations:

• Vertices can create / destroy vertices at will

• Resolving conflicting requests:

• Partial ordering: E Remove, V Remove, V 
Add, E Add

• User-defined handlers: You fix the 
conflicts on your own

13

Wednesday, October 13, 2010



C++ API

• Input and output:

• Text file

• Vertices in a relational DB

• Rows in BigTable

• Custom - subclass Reader/Writer classes

14

Wednesday, October 13, 2010



Implementation

• Executable is copied to many machines

• One machine becomes the Master

• Coordinates activities

• Other machines become Workers

• Performs computation

15

Wednesday, October 13, 2010



Implementation

• Master partitions the graph

• Master partitions the input

• If a Worker receives input that is not for 
their vertices, they pass it along

• Supersteps begin

• Master can tell Workers to save graphs

16

Wednesday, October 13, 2010



Fault Tolerance

• At each superstep S:

• Workers checkpoint V, E, and Messages

• Master checkpoints Aggregators

• If a node fails, everyone starts over at S

• Confined recovery is under development

• what happens if the Master fails?

17

Wednesday, October 13, 2010



The Worker

• Keeps graph in memory

• Message queues for supersteps S and S+1

• Remote messages are buffered

• Combiner is used when messages are sent 
or received (save network and disk)

18

Wednesday, October 13, 2010



The Master

• Master keeps track of which Workers own 
each partition

• Not who owns each Vertex

• Coordinates all operations (via barriers)

• Maintains statistics and runs a HTTP server 
for users to view info on

19

Wednesday, October 13, 2010



Aggregators

• Worker passes values to its aggregator

• Aggregator uses tree structure to reduce 
vals w/ other aggregators

• Better parallelism than chain pipelining

• Final value is sent to Master

20

Wednesday, October 13, 2010



PageRank in Pregel

21

Wednesday, October 13, 2010



Shortest Path in Pregel

22

Wednesday, October 13, 2010



Evaluation

• 300 multicore commodity PCs used

• Only running time is counted

• Checkpointing disabled

• Measures scalability of Worker tasks

• Measures scalability w.r.t. # of Vertices

• in binary trees and log-normal trees

23

Wednesday, October 13, 2010



24

Wednesday, October 13, 2010



25

Wednesday, October 13, 2010



26

Wednesday, October 13, 2010



Current / Future Work

• Graph must fit in RAM - working on spilling 
over to / from disk

• Assigning vertices to machines to optimize 
traffic is an open problem

• Want to investigate dynamic re-
partitioning

27

Wednesday, October 13, 2010



Conclusions

• Pregel is production-ready and in use

• Usable after a short learning curve

• Vertex centric is not always easy to do

• Pregel works best on sparse graphs w / 
communication over edges

• Can’t change the API - too many people 
using it!

28

Wednesday, October 13, 2010



Related Work

• Hama - from the Apache Hadoop team

• BSP model but not vertex centric ala Pregel

• Appears not to be ready for real use:

•

29

Wednesday, October 13, 2010



Related Work

• Phoebus, released last week on github

• Runs on Mac OS X

• Cons (as of this writing):

• Doesn’t work on Linux

• Must write code in Erlang (since Phoebus 
is written in it)

30

Wednesday, October 13, 2010



Thanks!

• To my advisor, Chandra Krintz

• To Google for this paper

• To all of you for coming!

31

Wednesday, October 13, 2010


