Graph (Semi-structured) Data

The Data Model

Data Viewed As Graph

e Original intuition:
— Entities (objects) are represented as nodes
— Relationships are represented as edges
— Therefore, nodes and edges have associated types, and attributes

* Many variations in circulation
— Kind of edges?

e Directed
e undirected

— Where is data?

* Only on nodes
* Only on edges
* On both
— Shape of graph?
* Arbitrary (has cycles)
* Directed Acyclic Graph
* Tree

Node-labeled

book
~

author author author title

“Abiteboul”

“Buneman” “Data on the Web”

“Suciu”

Nodes are labeled with types (book, author, title) and/or data (strings)

“Abiteboul”

author

“Buneman”

v

Edge-labeled

author

book

“Suciu”

title

“Data on the Web”

Nodes labeled with Data, Edges with
Type

book
~

title
author author author

“Abiteboul” “Buneman” “Suciu” “Data on the Web”

Graphs May Have Cycles

references references

authoy/ title A a
year publisher autpfor

LIt b

1998
lastmame f' rsthamg Iastname f rst last

“Ullman" "Serge" "Abiteboul" 122 133

OEM (Object Exchange Model):
a reference serialization format

bib: &1
{ paper: &2{... },
book: &3{...},
paper: &4

{ author: &10
{ firstname: &15 "Serge",
lastname: &16 "Abiteboul" },
author: &111{ ...}
title: &12{ ... }
pages: &13
{ first: &17 122,
last: &18 133},
references: &2,
references: &3

}
}

Advantages of graph data model:

* easy to discover new data and load it

* easy to integrate heterogeneous data

* easy to query without knowing data types

Disadvantages:
* |oses type information
* |lack of schema makes optimisation harder

Graph Schemas

e given some semi-structured data, might want
to extract a schema that describes it

e useful for
— browsing the data by types

— optimizing queries by reducing the number of
paths searched

— improving storage of data

Schema Graph

* specifies schema as a graph itself

 schema graph specifies what edges are
permitted in a data graph

e every path in the data graph occurs in the
schema graph

Schema Graph Example

bib

book . paper
/ references \

.’ references

pages

title publisher yeaar

author

tithg

firsthame lasthame first last

Data Graph Satisfying a Schema
Graph
e given data graph D and schema graph S

 Disaninstance of S (or D satisfies S) if there
exists a simulation R from D to S such that
(root(D), root(S)) is in R

e asimulation is a relation R between nodes:
— if (u,v)isin R and (u,x) labeled / is in D
then there exists (v,y) labeled /in S
such that (x,y) isin R

For Our Running Example

node &1 in D related under R to node at target of bib edge in S
&2 and &4 related to node at target of paper edge
&3 related to node at target of book edge

note that above two cases need to satisfy requirements of edges
labeled references as well

&10 and &11 related to node at target of edge labelled author

A Less Specific Schema Graph

bib

book “ Paper
.‘ references

publisher pages

autyp or

firstname lastname first last

Data Guide

data guide is a concise and accurate summary of a data graph
e qaccurate: every path in the data occurs in the data guide, and vice versa
* concise: every path in the data guide occurs exactly once

data guide is the most specific schema graph for a given data graph

* i.e., thereis a simulation from the data guide to every other schema graph
the data graph satisfies

connection to Finite State Automata:
» data graph is analogous to a nondeterministic finite state automaton (NFA)

* given NFA N, data guide is analogous to a deterministic finite state
automaton (DFA) equivalent to NFA N

e conversion from NFA to DFA can result in exponential increase in size

Data Guide Example

book

references

references
2.3

author bublisher title year
' ublisher pages
title P uthos
.'l-' itle

lasthame firsthame lasthame first last

Example Discussed

provides a classification of nodes/objects in the
data

2 and 4 are papers

5,10 and 11 are authors of papers

2 and 3 are referenced by papers

6 and 8 are titles of objects referenced by papers

3is both a book and an object that is referenced
by an object that is referenced by a paper

Representative Query
Paradigms

Philosophy: Patterns

* Inspired by relational QBE formalism

* Basic pattern: matches against a single edge
s—E-> _t

_s,_t: node variables, E: edge type label

 Example:
find endpoints of paths crossing an E edge, then an F edge

Ql(s, t):- s—E-> x, x—F->_t

* Find nodes with an outgoing D edge whose target
nas an outgoing E edge and an outgoing F edge.
Return source node and the two target nodes.

Q2(s, e, f):- s—D-> x, x—E-> e, x—F-> _f

Note use of variable _x to match against the fork
node

Regular Path Patterns: Concatenation

* When intermediate nodes on path do not
need to be named:

Ql(s, t):- s—E-> x, x—F-> t
Expression E.F expresses edge concatenation :

Q1'(s, t):- s—EF-> _t

Regular Path Patterns: Disjunction

* Find endpoints of E or F edges:
Q3(s, t):- s—E|F-> _t

* Find endpoints of paths strting with an E edge,
followed by an F or G edge, then by an H edge:

Q4(s, t):- s—E.(F|G).H> t

Regular Path Patterns: Wildcard

* Find endpoints of all edges, regardless of edge type

Q5(s, t):- s- >t

* Endpoints of paths of length 3

Q6(s, t):- s- .. >t

 Nodes involved in self-loops

Q7(_ n):- n-_->n

Regular Path Patterns: Kleene Star

[J p*
Specifies arbitrarily many (including 0) repetitions of path pattern p

* Pairs of connected nodes

Q8(s, t):- s- *-> t

* Pairs of nodes connected only by red or blue edges

Q9(_ s, t):- _s—(red|blue)* > t

* Connected by an alternation of red and blue edges, starting with red

Q10 (_s, t) :- _s—(red.blue)* > t

Regular Path Patterns: Syntax

where T is any edge type label

Node Construction

* So far, queries have only extracted sets of
tuples of nodes

e What if we wish to construct new nodes?

* Need to specify
— Node identity
— New edges connecting newly created nodes

Generating Node |Identities: Skolem
functions

* A Skolem Function associates with its
arguments the identity of a node.

 When called for the first time with a certain
argument, the function creates a fresh node
and returns its identity

e Subsequent calls with the same argumet
return the identity of the previously created
node

Representative QL: StruQL

* For each author of a referenced book, create a “citedAuthor” edge,
emanating from a fresh “Result” node

from bibGraph r

where _r—bib.book -> b,
_b—author-> 3,
_a-—lastname -> |,
_a—ssn->_s,
r-*.references-> b

create Result (), Aut (_s), LN (_s, I)

link Result () — CitedAuthor -> Aut (_s),
Aut (_s) — LastName -> LN (_s,)

