
XQuery
Web Data Management and Distribution

Serge Abiteboul Ioana Manolescu Philippe Rigaux
Marie-Christine Rousset Pierre Senellart

Web Data Management and Distribution
http://webdam.inria.fr/textbook

September 23, 2011

WebDam (INRIA) XQuery September 23, 2011 1 / 44

Basics

Why XQuery?

XQuery, the XML query language promoted by the W3C. See:
http://www.w3.org/XML/Query

Check your queries online (syntactic analysis):
http://www.w3.org/2005/qt-applets/xqueryApplet.html

Sample queries:
http://www.w3.org/TR/xquery-use-cases/

XQuery vs XSLT

XSLT is a procedural language, good at transforming XML documents

XQuery is a declarative language, good at efficiently retrieving some
content from large (collections of) documents

Remark
In many cases, XSLT and XQuery can be used interchangeably. The choice is
a matter of context and/or taste.

WebDam (INRIA) XQuery September 23, 2011 2 / 44

Basics

Main principles

The design of XQuery satisfies the following rules:

Closed-form evaluation. XQuery relies on a data model, and each query maps
an instance of the model to another instance of the model.

Composition. XQuery relies on expressions which can be composed to form
arbitrarily rich queries.

Type awareness. XQuery may associate an XSD schema to query
interpretation. But XQuery also operates on schema-free
documents.

XPath compatibiliy. XQuery is an extension of XPath 2.0 (thus, any XPath
expression is also an XQuery expression).

Static analysis. Type inference, rewriting, optimisation: the goal is to exploit
the declarative nature of XQuery for clever evaluation.

At a syntactic level, XQuery aims at remaining both concise and simple.

WebDam (INRIA) XQuery September 23, 2011 3 / 44

XQuery Data Model

A simple model for document collections

A value is a sequence of 0 to n items.

An item is either a node or an atomic value.

There exist 7 kinds of nodes:

Document, the document root;

Element, named, mark the structure of the document;

Attributes, named and valued, associated to an Element;

Text, unnamed and valued;

Comment;

ProcessingInstruction;

Namespace.

The model is quite general: everything is a sequence of items. This covers
anything from a single integer value to wide collections of larges XML
documents.

WebDam (INRIA) XQuery September 23, 2011 4 / 44

XQuery Data Model

Examples of values

The following are example of values

47 : a sequence with a single item (atomic value);

<a/> : a sequence with a single item (Element node);

(1, 2, 3) : a sequence with 3 atomic values.

(47, <a/>, "Hello") : a sequence with 3 items, each of different
kinds.

() the empty sequence;

an XML document;

several XML documents (a collection).

WebDam (INRIA) XQuery September 23, 2011 5 / 44

XQuery Data Model

Sequences: details

There is no distinction between an item and a sequence of length 1 ⇒

everything is a sequence.

Sequence cannot be nested (a sequence never contains another sequence)

The notion of “null value” does not exist in the XQuery model: a value is there,
or not.

A sequence may be empty

A sequence may contain heterogeneous items (see previous examples).

Sequences are ordered: two sequences with the same set of items, but
ordered differently, are different.

WebDam (INRIA) XQuery September 23, 2011 6 / 44

XQuery Data Model

Items: details

Nodes have an identity; values do not.

Element and Attribute have type annotations, which may be inferred from the
XSD schema (or unknown if the schema is not provided).

Nodes appear in a given order in their document. Attribute order is undefined.

WebDam (INRIA) XQuery September 23, 2011 7 / 44

XQuery Data Model

Syntactic aspects of XQuery

XQuery is a case-sensitive language (keywords must be written in lowercase).

XQuery builds queries as composition of expressions.

An expression produces a value, and is side-effect free (no modification of the
context, in particular variable values).

XQuery comments can be put anywhere. Syntax:

(:This is a comment :)

WebDam (INRIA) XQuery September 23, 2011 8 / 44

Formulating queries Preliminaries

Evaluation context

An expression is always evaluated with respect to a context. It is a slight
generalization of XPath and XSLT contexts, and includes:

Bindings of namespace prefixes with namespaces URIs

Bindings for variables

In-scope functions

A set of available collections and a default collection

Date and time

Context (current) node

Position of the context node in the context sequence

Size of the sequence

WebDam (INRIA) XQuery September 23, 2011 9 / 44

Formulating queries Preliminaries

XQuery expressions

An expression takes a value (a sequence of items) and returns a value.

Expressions may take several forms

path expressions;

constructors;

FLWOR expressions;

list expressions;

conditions;

quantified expressions;

data types expressions;

functions.

WebDam (INRIA) XQuery September 23, 2011 10 / 44

Formulating queries Preliminaries

Simple expressions
Values are expressions:

Literals: ’Hello’, 47, 4.7, 4.7E+2

Built values: date(‘2008-03-15’), true(), false()

Variables: $x

Built sequences: (1, (2, 3), (), (4, 5)), equiv. to (1, 2, 3,
4, 5), equiv. to 1 to 5.

An XML document is also an expression.

<employee empid="12345">
<name>John Doe</name>
<job>XML specialist</job>
<deptno>187</deptno>
<salary>125000</salary>
</employee>

The result of these expressions is the expression itself!
WebDam (INRIA) XQuery September 23, 2011 11 / 44

Formulating queries Preliminaries

Retrieving documents and collections

A query takes in general as input one or several sequences of XML
documents, called collections.

XQuery identifies its input(s) with the following functions:

doc() takes the URI of an XML document and returns a singleton
document tree;

collection() takes a URI and returns a sequence.

The result of the doc() function is the root node of the document tree, and its
type is Document.

WebDam (INRIA) XQuery September 23, 2011 12 / 44

Formulating queries Preliminaries

XPath and beyond

Any XPath expression is a query. The following retrieves all the movies titles in
the movies collection (for movies published in 2005).

collection(’movies’)/movie[year=2005]/title

The result is a sequence of title nodes:

<title>A History of Violence</title>
<title>Match Point</title>

Remark
The XPath expression is evaluated for each item (document) in the sequence
delivered by collection(’movies’).

WebDam (INRIA) XQuery September 23, 2011 13 / 44

Formulating queries Preliminaries

Constructors

XQuery allows the construction of new elements, whose content may freely
mix literal tags, literal values, and results of XQuery expressions.

<titles>
{collection(’movies’)//title}

</titles>

Expressions can be used at any level of a query, and a constructor may
include many expressions.

Remark
An expression e must be surrounded by curly braces {} in order to be
recognized and processed.

WebDam (INRIA) XQuery September 23, 2011 14 / 44

Formulating queries Preliminaries

Constructors

Other element constructors

<chapter ref="[{1 to 5, 7, 9}]">

same as:

<chapter ref="[1 2 3 4 5 7 9]">

<chapter ref="[1 to 5, 7, 9]">

same as

<chapter ref="[1 to 5, 7, 9]">

The constructor:

<paper>{$myPaper/@id}</paper>

will create an element of the form:

<paper id="271"></paper>

WebDam (INRIA) XQuery September 23, 2011 15 / 44

Formulating queries Preliminaries

Variables

A variable is a name that refers to a value. It can be used in any expression
(including identity) in its scope.

<employee empid="{$id}">
<name>{$name}</name>

{$job}
<deptno>{$deptno}</deptno>
<salary>{$SGMLspecialist+100000}</salary>

</employee>

Variables $id, $name, $job, $deptno and $SGMLspecialist must be
bound to values.

WebDam (INRIA) XQuery September 23, 2011 16 / 44

Formulating queries FLWOR expressions

FLWOR expressions

The most powerful expressions in XQuery. A FLWOR (“flower”) exp.:

iterates over sequences (for);

defines and binds variables (let);

apply predicates (where);

sort the result (order);

construct a result (return).

An example (without let):

for $m in collection(’movies’)/movie
where $m/year >= 2005
return
<film>{$m/title/text()},

(director: {$m/director/last_name/text()})
</film>

WebDam (INRIA) XQuery September 23, 2011 17 / 44

Formulating queries FLWOR expressions

FLWOR expressions and XPath

In its simplest form, a FLWR expression provides just an alternative to XPath
expressions. For instance:

let $year:=1960
for $a in doc(’SpiderMan.xml’)//actor
where $a/birth_date >= $year
return $a/last_name

is equivalent to the XPath expression

//actor[birth_date>=1960]/last_name

Not all FLWR expressions can be rewritten with XPath.

WebDam (INRIA) XQuery September 23, 2011 18 / 44

Formulating queries FLWOR expressions

A complex FLWOR example

"Find the description and average price of each red part that has at least 10
orders" (assume collections parts.xml and orders.xml):

for $p in doc("parts.xml")//part[color = "Red"]
let $o := doc("orders.xml")//order[partno = $p/partno]
where count($o) >= 10
order by count($o) descending
return
<important_red_part>
{ $p/description }
<avg_price> {avg($o/price)} </avg_price>
</important_red_part>

WebDam (INRIA) XQuery September 23, 2011 19 / 44

Formulating queries FLWOR expressions

for and let

Both clauses bind variables. However:

for successively binds each item from the input sequence.
for $x in /company/employee binds each employee to
$x, for each item in the company sequence.

let binds the whole input sequence.
let $x := /company/employee binds $x to all the

employees in company.

Note the for may range over an heterogeneous sequence:

for $a in doc("Spider-Man.xml")//*
where $a/birth_date >= 1960
return $a/last_name

Here, $a is bound in turn to all the elements of the document! (Does it work?
Yes!)

WebDam (INRIA) XQuery September 23, 2011 20 / 44

Formulating queries FLWOR expressions

for + return = an expression!
The combination for and return defines an expression: for defines the
input sequence, return the output sequence.

A simple loop:

for $i in (1 to 10) return $i

Nested loops:

for $i in (1 to 10) return
for $j in (1 to 2) return $i * $j

Syntactic variant:

for $i in (1 to 10),
$j in (1 to 2) return $i * $j

Combination of loops:

for $i in (for $j in (1 to 10) return $j * 2)
return $i * 3

WebDam (INRIA) XQuery September 23, 2011 21 / 44

Formulating queries FLWOR expressions

Defining variables with let

let binds a name to a value, i.e., a sequence obtained by any convenient
mean, ranging from literals to complex queries:

let $m := doc("movies/Spider-Man.xml")/movie
return $m/director/last_name

A variable is just a synonym for its value:

let $m := doc("movies/Spider-Man.xml")/movie
for $a in $m/actor
return $a/last_name

The scope of a variable is that of the FLWR expression where it is defined.
Variables cannot be redefined or updated within their scope.

WebDam (INRIA) XQuery September 23, 2011 22 / 44

Formulating queries FLWOR expressions

The where clause
where is quite similar to its SQL synonym. The difference lies in the much
more flexible structure of XML documents.
“Find the movies directed by M. Allen”

for $m in collection("movies")/movie
where $m/director/last_name="Allen"
return $m/title

Looks like a SQL query? Yes but predicates are interpreted according to the
XPath rules:

1 if a path does not exists, the result is false, no typing error!

2 if a path expression returns several nodes: the result is true if there is at
least one match.

“Find movies with Kirsten Dunst” (note: many actors in a movie!)

for $m in collection("movies")/movie
where $m/actor/last_name="Dunst"
return $m/title

WebDam (INRIA) XQuery September 23, 2011 23 / 44

Formulating queries FLWOR expressions

The return clause
return is a mandatory part of a FLWR expression. It is instantiated once for
each binding of the variable in the for clause.

for $m in collection("movies")/movie
let $d := $m/director
where $m/actor/last_name="Dunst"
return
<div>
{$m/title/text(), "directed by",

$d/first_name/text(), $d/last_name/text()},
with

{for $a in $m/actor

return {$a/first_name, $a/last_name,
" as ", $a/role}

}

</div>

WebDam (INRIA) XQuery September 23, 2011 24 / 44

Formulating queries FLWOR expressions

Joins

Nested FLWOR expressions makes it easy to express joins on document, à la
SQL:

for $p in doc("taxpayers.xml")//person
for $n in doc("neighbors.xml")//neighbor
where $n/ssn = $p/ssn
return

<person>
<ssn> { $p/ssn } </ssn>

{ $n/name }
<income> { $p/income } </income>

</person>

Remark
The join condition can be expressed either as an XPath predicate in the
second for, or as a where clause.

WebDam (INRIA) XQuery September 23, 2011 25 / 44

Formulating queries FLWOR expressions

Join and grouping

“Get the list of departments with more than 10 employees, sorted on the
average salary”

for $d in doc("depts.xml")//deptno
let $e := doc("emps.xml")//employee[deptno=$d]
where count($e) >= 10
order by avg($e/salary) descending
return <big-dept>

{ $d,
<headcount>{count($e)}</headcount>,
<avgsal>{avg($e/salary)}</avgsal>

}
</big-dept>

WebDam (INRIA) XQuery September 23, 2011 26 / 44

Formulating queries Other expressions

Operations on lists
XQuery proposes operators to manipulate lists:

1 concatenation

2 set operations: (union, intersection, difference)

3 Functions (remove(), index-of (), count(), avg(), min(), max(), etc.)

The distinct values from a list can be gathered in another list. (This loses
identity and order.)
“Give each publisher with their average book price”

for $p in
distinct-values(doc("bib.xml")//publisher)
let $a :=
avg(doc("bib.xml")//book[publisher=$p]/price)

return
<publisher>
<name>{ $p/text() }</name>
<avgprice>{ $a }</avgprice>
</publisher>

WebDam (INRIA) XQuery September 23, 2011 27 / 44

Formulating queries Other expressions

if-then-else expressions

“Give the holding of published documents”

for $h in doc("library.xml")//holding
return
<holding>

{ $h/title,
if ($h/@type = "Journal")
then $h/editor
else $h/author }

</holding>

WebDam (INRIA) XQuery September 23, 2011 28 / 44

Formulating queries Other expressions

some expressions

some expresses the existential quantifier:

“Get the document that mention sailing and windsurfing activities”

for $b in doc("bib.xml")//book
where some $p in $b//paragraph

satisfies (contains($p,"sailing")
and contains($p,"windsurfing"))

return $b/title

WebDam (INRIA) XQuery September 23, 2011 29 / 44

Formulating queries Other expressions

every expressions

every expresses the universal quantifier:

“Get the document where each paragraph talks about sailing“

for $b in doc("bib.xml")//book
where every $p in $b//paragraph

satisfies contains($p,"sailing")
return $b/title

WebDam (INRIA) XQuery September 23, 2011 30 / 44

More on XQuery

XQuery processing model

WebDam (INRIA) XQuery September 23, 2011 31 / 44

More on XQuery

When XQuery doesn’t behave as expected

1 The query does not parse (applet grammar check page) ⇒ reformulate it.
You may start from the XQuery use cases.

2 The query parses, but does not work.

3 The query works, but the results are unexpected ⇒ figure out what the
parser understood.

WebDam (INRIA) XQuery September 23, 2011 32 / 44

More on XQuery

When XQuery doesn’t behave as expected

Sometimes the query parses but will not work (the engine will refuse it).
The parser only checks that the production is well-formed. It does not check
that the context provides sufficient information to run the query:

the functions called in the query are defined

the variables referred in the query are defined

the numeric operations are legal etc.

This query parses but it does not work:

for $x in doc("bib.xml")//book
return <res1>{$x/title}</res1>,

<res2>{$x/author}</res2>

org.exist.xquery.XPathException:
variable $x is not bound.

WebDam (INRIA) XQuery September 23, 2011 33 / 44

More on XQuery

When XQuery doesn’t behave as expected
Sometimes the query parses but will not work (the engine will refuse it).
This query parses but it does not work:

for $x in doc("bib.xml")//book
return <res1>{$x/title}</res1>,

<res2>{$x/author}</res2>

org.exist.xquery.XPathException:
variable $x is not bound.

The parser saw this as a sequence formed of:

a for-return expression

a path expression

You probably meant:

for $x in doc("bib.xml")//book
return (<res1>{$x/title}</res1>,

<res2>{$x/author}</res2>)

WebDam (INRIA) XQuery September 23, 2011 34 / 44

More on XQuery

When XQuery doesn’t behave as expected

The query gives unexpected results:

Query
//book[price<"39.95"]

Result
<book year="1999">

<title>The Economics of Technology...</title>

<editor>

<last>Gerbarg</last>

<first>Darcy</first>

<affiliation>CITI</affiliation>

</editor>

<publisher>Kluwer Academic Publishers</publisher>

<price>129.95</price>

</book>

WebDam (INRIA) XQuery September 23, 2011 35 / 44

More on XQuery

When XQuery doesn’t behave as expected

The query gives unexpected results:

Query
//book[price<"39.95"]

Parsing tree (partial):

The comparison is done in the string domain.

WebDam (INRIA) XQuery September 23, 2011 36 / 44

More on XQuery

When XQuery doesn’t behave as expected

The query gives unexpected results:
This query has the desired meaning:

Query
//book[price<39.95]

Parsing tree (partial):

This time, the comparison is done in the numeric domain.

WebDam (INRIA) XQuery September 23, 2011 37 / 44

More on XQuery

When XQuery doesn’t behave as expected

for $b in doc("bib.xml")//book return bla

WebDam (INRIA) XQuery September 23, 2011 38 / 44

More on XQuery

When XQuery doesn’t behave as expected

The query gives unexpected results

for $b in doc("bib.xml")//book return bla

The last part of the expression is a path expression testing if the context node
is named bla.
If the context is empty, the query has an empty result.
Maybe you meant:

for $b in doc("bib.xml")//book return "bla"

WebDam (INRIA) XQuery September 23, 2011 39 / 44

More on XQuery

More on comparisons

1 Two atomic values:
◮ determine the types of both operands
◮ cast then to a common type
◮ compare the values according to the rules of that type

2 One atomic value and a node:
◮ Cast the node to a string, then proceed as above.

3 Two lists (one list may be of length one):
◮ Compare all list item pairs, return true if the predicate is satisfied at least

for one item pair.

Casting is described in the XQuery Functions and Operators document.

WebDam (INRIA) XQuery September 23, 2011 40 / 44

More on XQuery

Going in depth: W3C specifications

Web documents found under http://www.w3.org. Not articles! Typically very
long but navigable. The Introduction clarifies the document role, then go
directly to the interesting (sub)sections.
XML specification:

XML and DTDs

Namespaces in XML

XML Schema

XQuery specification:

XQuery 1.0 specification (syntax)

XPath functions and operators (op:equal, fn:text,
fn:distinct-values, fn:document, op:gt, ...)

XQuery data model

WebDam (INRIA) XQuery September 23, 2011 41 / 44

More on XQuery

XQuery implementations

Among those that are free and/or open-source:

Galax : complete, not very efficient

Saxon : in memory; by Michael Kay, XSL guru

MonetDB : based on in-memory column-oriented engine; among the
fastest

eXist : very user-friendly interface

QizX : Xavier Franc. Nice but not great

BerkeleyDB XML : now belongs to Oracle

WebDam (INRIA) XQuery September 23, 2011 42 / 44

More on XQuery

SQL/XML: bridging the two worlds

Recent SQL versions (2003) include:

a native XML atomic type, which can be queried in XQuery style

a set of XML publishing functions: extracting XML elements out of
relational data by querying

mapping rules: exporting relational tables in XML

Advantages:

Unified manipulation of relational and XML data

Efficient relational query engine well exploited

Ease of transformation from one format to another

Disadvantage:

Complexity

WebDam (INRIA) XQuery September 23, 2011 43 / 44

More on XQuery

SQL/XML: bridging the two worlds

XML publishing functions:

select xmlelement(name Customer,
xmlattributes(c.city as city),
xmlforest(c.CustID,

c.Name as CustName))
from customer c

Mixed querying:

select customer, XMLExtract(order, ’/order/@date’)
from orders
where XMLExists(order,

’/order[//desc/text()="Shoes"]’)
=1

The precise SQL/XML syntax sometimes depends on the vendor.

WebDam (INRIA) XQuery September 23, 2011 44 / 44

	Basics
	XQuery Data Model
	Formulating queries
	Preliminaries
	FLWOR expressions
	Other expressions

	More on XQuery

