
Query	Languages	for	
Unrestricted	Graph	Data	

Alin	Deutsch	
UC	San	Diego	

The	Age	of	the	Graph	Is	Upon	Us	(Again)	

•  Early-mid-90s:	semi-	or	un-structured	data	research	was	all	
the	rage	
–  data	logically	viewed	as	graph	
–  initially	motivated	by	modeling	WWW	(page=vertex,	link=edge)	
–  query	languages	expressing	constrained	reachability	in	graph	

•  Late	90s:	special	case	XML	(graph	restricted	to	tree	shape)	

•  2000s:	JSON	and	friends	(also	tree	shaped)	

•  ~2010	to	present:	back	to	unrestricted	graphs	
–  Initially	motivated	by	analytic	tasks	in	social	networks,		
–  Now	universal	use	(data	is	linked	in	all	scenarios)	

The	Unrestricted	Graph	Data	Model	
•  Nodes	correspond	to	entities	

•  Edges	are	binary,	correspond	to	relationships	

•  Edges	may	be	directed	or	undirected	

•  Nodes	and	edges	may	carry	labels	

•  Nodes	and	edges	annotated	with	data	
–  both	have	sets	of	attributes	(key-value	pairs)	

•  A	schema	is	not	required	to	formulate	queries	

Example	Graph	

Vertex	types:	
•  Product				(name,	category,	price)	
•  Customer	(ssn,	name,	address)	
	
Edge	types:	
•  Bought	(discount,	quantity)	
•  Customer	c	bought	100	units	of	product	p	at	discount	5%:	
					
				modeled	by	edge	
	
				c	--	(Bought	{discount=5%,	quantity=100})à	p	

Expressing	Graph	Analytics	

•  Two	Different	Approaches	
–  	High-level	query	languages	à	la	SQL	
– Low-level	programming	abstractions	

•  Programs	written	in	C++,	Java,	Scala,	Groovy…	

•  Initially	adopted	by	disjoint	communities	
(recall	NoSQL	debates)	

•  Recent	trend	towards	unification	

High-Level	Query	Languages	

Some	Modern	Graph	QLs	We	Will	Discuss	

There	is	a	host	of	them!	Spectrum	includes	
	
•  Datalog	with	aggregation	(LogicBlox)	

•  Cypher	(neo4j)	
–  declarative,	highly	similar	to	StruQL	(and	hence	CRPQs)	

•  Gremlin	(Apache	and	commercial	projects)	
–  dataflow	programming	model:	graph	annotated	with	tokens	
(“traversers”)	that	flow	through	it	according	to	user	program	

•  New	arrival:	GSQL	(TigerGraph)	
–  Inspired	by	SQL	+	BSP,	extended	for	more	flexible	grouping/
aggregation	

Key	Ingredients	for		
High-Level	Query	Languages	

•  Pioneered	by	academic	work	on	Conjunctive	Query	
(CQ)	extensions	for	graphs	(since	‘87)	
–  Path	expressions	(PEs)	for	navigation	
–  Variables	for	manipulating	data	found	during	navigation	
–  Stitching	multiple	PEs	into	complex	navigation	patterns			
à	conjunctive	regular	path	queries	(CRPQs)	

•  Beyond	CRPQs,	needed	in	modern	applications:	
–  Aggregation	of	data	encountered	during	navigation		
				è	support	for	bag	semantics	as	prerequisite		
–  Intermediate	results	assigned	to	nodes/edges	
–  Control	flow	support	for	class	of	iterative	algorithms	that	
converge	to	result	in	multiple	steps		

•  (e.g.	PageRank-class,	recommender	systems,	shortest	paths,	etc.)	

Path	Expressions	

Path	Expressions	

•  Express	reachability	via	constrained	paths		

•  Early	graph-specific	extension	over	conjunctive	queries	

•  Introduced	initially	in	academic	prototypes	in	early	90s	
–  StruQL				(AT&T	Research,	Fernandez,	Halevy,	Suciu)	
– WebSQL		(Mendelzon,	Mihaila,	Milo)	
–  Lorel								(Widom	et	al)	

•  Today	supported	by	languages	of	commercial	systems	
–  Cypher,	SparQL,	Gremlin,	GSQL	

Path	Expression	Syntax	

Notations	vary.	Adopting	here	that	of		SparQL	W3C	
Recommendation.	
	
path	à	edge	label	

	 	| 	_ 	 	 	 	 	 	//	wildcard,	any	edge	label	
	 	| 	^	edge	label 	 	 	// 	inverse	edge	 		
	 	| 	path	.	path 	 	 	//	concatenation	
	 	| 	path	|	path 	 	 	//	alternation	
	 	| 	path*	 	 	 	 	//	0	or	more	reps	
	 	|	 	path*(min,max)	 	//	at	least	min,	at	most	max	
	 	| 	(path)	

	
	

Path	Expression	Examples	(1)	

•  Pairs	of	customer	and	product	they	bought:	

	Bought	

•  Pairs	of	customer	and	product	they	were	involved	with	(bought	
or	reviewed)	

	Bought|Reviewed	

•  Pairs	of	customers	who	bought	same	product		
					(lists	customers	with	themselves)	

	Bought.^Bought	

Path	Expression	Examples	(2)		

•  Pairs	of	customers	involved	with	same	product	(like-
minded)	

	(Bought|Reviewed).(^Bought|^Reviewed)	

•  Pairs	of	customers	connected	via	a	chain	of	like-minded	
customer	pairs	

	((Bought|Reviewed).(^Bought|^Reviewed))*	

Path	Expression	Semantics	

•  In	most	academic	research,	the	semantics	are	
defined	in	terms	of	sets	of	node	pairs	

•  Traditionally	specified	in	two	ways:	
– Declaratively,	based	on	satisfaction	of	formulae/
patterns	

–  Procedurally,	based	on	algebraic	operations	over	
relations	

•  These	are	equivalent	

Classical	Declarative	Semantics		

•  Given:		
–  graph	G	
–  path	expression	PE	

						
•  the	meaning	of	PE	on	G,	denoted	PE(G)	is	

the	set	of	node	pairs	(src,	tgt)		
s.t.	there	exists	a	path	in	G	from	src	to	tgt		
							whose	concatenated	labels	spell	out	a	word	in	L(PE)	
	

L(PE)	=	language	accepted	by	PE	when	seen	as	
regular	expression	over	alphabet	of	edge	labels	

Classical	Procedural	Semantics	

PE(G)	is	a	binary	relation	over	nodes,	defined	inductively	as:	

•  E(G)	=	set	of	s-t	node	pairs	of	E	edges	in	G	

•  _(G)	=	set	of	s-t	node	pairs	of	any	edges	in	G	

•  ^E(G)	=	set	of	t-s	node	pairs	of	E	edges	in	G	

•  P1.P2(G)	=	P1(G)	o	P2(G) 		

•  P1|P2(G)	=	set	union	(P1(G),	P2(G))	

•  P*(G)	=	reflexive	transitive	closure	of	P(G)	

relational	
composition	

finite	due	to	
saturation	

Conjunctive	Regular	Path	Queries	

•  Replace	relational	atoms	appearing	in	CQs	with	path	
expressions.	

•  Explicitly	introduce	variables	binding	to	source	and	
target	nodes	of	path	expressions.		

•  Allow	multiple	path	expression	atoms	in	query	body.	

•  Variables	can	be	used	to	stitch	multiple	path	
expression	atoms	into	complex	patterns.	

CRPQ	Examples	

•  Pairs	of	customers	who	have	bought	same	
product	(do	not	list	a	customer	with	herself):	

					Q1(c1,c2)	:-	c1	–Bought.^Bought->	c2,	c1	!=	c2	

•  Customers	who	have	bought	and	also	reviewed	a	
product:	

					Q2(c)	:-	c	–Bought->	p,	c	–Reviewed->	p	

CRPQ	Semantics	

•  Naturally	extended	from	single	path	expressions,	
following	model	of	CQs	

•  Declarative	
–  lifting	the	notion	of	satisfaction	of	a	path	expression	
atom	by	a	source-target	node	pair	to	the	notion	of	
satisfaction	of	a	conjunction	of	atoms	by	a	tuple	

	
•  Procedural		

–  based	on	SPRJ	manipulation	of	the	binary	relations	
				yielded	by	the	individual	path	expression	atoms	

Limitation	of	Set	Semantics	

•  Common	graph	analytics	need	to	aggregate	data		
–  e.g.	count	the	number	of	products	two	customers	
have	in	common	

•  	Set	semantics	does	not	suffice	
–  baked-in	duplicate	elimination	affects	the	aggregation		

•  As	in	SQL,	practical	systems	resort	to	bag	
semantics	

Path	Expressions	Under	Bag	Semantics	

PE(G)	is	a	bag	of	node	pairs,	defined	inductively	as:	

•  E(G)	=	set	bag	of	s-t	node	pairs	of	E	edges	in	G	

•  _(G)	=	set	bag	of	s-t	node	pairs	of	any	edges	in	G	

•  ^E(G)	=	set	bag	of	t-s	node	pairs	of	E	edges	in	G	

•  P1.P2(G)	=	P1(G)	o	P2(G) 		

•  P1|P2(G)	=	set	bag	union	(P1(G),	P2(G))	

•  P*(G)	=	reflexive	transitive	closure	of	P(G)	

relational	
composition	for	

bags	

Not	necessarily	
finite	under	bag	

semantics!	

Issues	with	Bag	Semantics	

•  Performance	and	semantic	issues	due	to	number	
of	distinct	paths	

•  Multiplicity	of	s-t	pair	in	query	output	reflects	
number	of	distinct	paths	connecting	s	with	t		

–  Even	in	DAGs,	these	can	be	exponentially	many.		
				Chain	of	diamonds	example:																										

– More	serious:	in	cyclic	graphs,	can	be	infinitely	many	

Solutions	In	Practice:		
Bound	Traversal	Length	

•  Upper-bound	the	length	of	the	traversed	path				
–  Recall	bounded	Kleene	construct	*(min,max)	

–  Bounds	length	and	hence	number	of	distinct	paths	
considered	

–  Supported	by	Gremlin,	Cypher,	SparQL,	GSQL,	very	
common	in	tutorial	examples	and	in	industrial	
practice	

	
	

Solutions	In	Practice:		
Restrict	Cycle	Traversal	

•  No	repeating	vertices	(simple	paths)	
–  Rules	out	paths	that	go	around	cycles			
–  Recommended	in	Gremlin	style	guides,	tutorials,	formal	
semantics	paper	

–  Gremlin’s	simplePath	()	predicate	supports	this	semantics	
–  Problem:	membership	of	s-t	pair	in	result	is	NP-hard	

•  No	repeating	edges	
–  Allows	cyclic	paths	
–  Rules	out	paths	that	go	around	same	cycle	more	than	once	
–  This	is	the	Cypher	semantics	

	

Solutions	In	Practice:		
Mix	Bag	and	Set	Semantics	

•  Bag	semantics	for	star-free	fragments	of	PE	
•  	Set	semantics	for	Kleene-starred	fragments	of	PE	
•  Combine	them	using	(bag-aware)	joins	

•  Example:	
													p1.p2*.p3(G)			
	
					treated	as		
														
													p1(G)	o	(distinct	(p2*(G)))	o	p3(G)	
		
•  This	is	the	SparQL	semantics	(in	W3C	Recommendation)	

Solutions	In	Practice:		
Leave	it	to	User	

•  User	explicitly	programs	desired	semantics	

•  Path	is	first-class	citizen,	can	be	mentioned	in	query	

•  Can	simulate	each	of	the	above	semantics,	e.g.	by	checking	the	
path	for	repeated	nodes/edges	

•  Could	lead	to	infinite	traversals	for	buggy	programs	

•  Supported	by	Gremlin,	GSQL		
–  also	partially	by	Cypher	(modulo	restriction	that	only	edge	
non-repeating	paths	are	visible)	

One	Semantics	I	Would	Prefer	

•  Allow	paths	to	go	around	cycles,	even	multiple	times	

•  Achieve	finiteness	by	restriction	to	pumping-minimal	paths		
–  in	the	sense	of	Pumping	Lemma	for	Finite	State	Automata	(FSA)	
–  PE	are	regular	expressions,	they	have	an	equivalent	FSA	
representation	(unique	up	to	minimization)	

–  As	path	is	traversed,	FSA	state	changes	at	every	step	
–  Rule	out	paths	in	which	a	vertex	is	repeatedly	reached	in	the	
same	FSA	state	

•  Can	be	programmed	by	user	in	Gremlin	and	GSQL	(costly!)	

A	Tractable	Semantics:	Shortest	Paths	

•  For	pattern		
	x	–Pattern->	y,	

	
vertex	pair	(s,t)	is	an	answer	iff	there	is	a	path	p	from	s	
to	t	s.t.		
– word	spelled	by	edge	labels	of	p	is	in	L(Pattern)	
–  p	is	shortest	among	all	such	paths	from	s	to	t	

•  Multiplicity	of	(s,t)	in	answer	is	the	count	of	such	
shortest	paths	

Contrasting	Semantics	

•  pattern	E*	over	graph:	

											s																																																													t	

•  s-t	is	an	answer	under	all	semantics,	but	
–  Simple-path:	s-t	has	multiplicity	2	
– Unique-edge:	s-t	has	multiplicity	3	
–  Shortest-path:	s-t	has	multiplicity	1	

E	 E	 E	

E	 E	 E	 E	
E	E	

E	 E	
E	E	

Aggregation	

Let’s	See	it	First	as	CQ	Extension	

•  Count	toys	bought	in	common	per	customer	pair	
	
				Q(c1,	c2,	count	(p))	:-	c1	–Bought->	p,	c2	–Bought->	p,		
																																											p.category	=	“toys”,	c1	<	c2	
	
•  c1,	c2:	composite	group	key	-	no	explicit	group-by	clause	

•  Standard	syntax	for	aggregation-extended	CQs	and	Datalog	

•  Rich	literature	on	semantics		
–  (tricky	for	Datalog	when	aggregation	and	recursion	interleave).	

Aggregation	in	Modern	Graph	QLs	

•  Cypher’s	RETURN	clause	uses	similar	syntax	as	
aggregation-extended	CQs	

•  Gremlin	and	SparQL	use	an	SQL-style	GROUP	
BY	clause	

•  GSQL	uses	aggregating	containers	called	
“accumulators”	

Flavor	of	Representative	
Languages	

Running	Example	in	CRPQ	Form	

•  Recall:	
					count	toys	bought	in	common	per	customer	pair	
	
							Q(c1,	c2,	count	(p))	:-	c1	–Bought->	p,	c2	–Bought->	p,		
																																														p.category	=	“toys”,	c1	<	c2	

SparQL	

•  Query	language	for	the	semantic	web		
– graphs	corresponding	to	RDF	data	are	directed,	
labeled	graphs	

	
•  W3C	Standard	Recommendation	

Running	Example	in	SparQL	

SELECT			?c1,	?c2,	count	(?p)	
	
WHERE			{	?c1	bought	?p.	
																			?c2	bought	?p.	
	 	 					?p		category	?cat.	

	
	 	 					FILTER	(?cat	==	“toys”	&&	?c1	<	?c2)	}	

	
GROUP	BY	?c1,	?c2	

SparQL	Semantics	by	Example	

•  Coincides	with	CRPQ	version	

				Q(c1,	c2,	count	(p))	:-	c1	–Bought->	p,	c2	–Bought->	p,		
																																											p.category	=	“toys”,	c1	<	c2	

Cypher	

•  The	query	language	of	the	neo4j	commercial	
native	graph	db	system	

•  Essentially	StruQL	with	some	bells	and	whistles	

•  Also	supported	in	a	variety	of	other	systems:	
–  SAP	HANA	Graph,	Agens	Graph,		
				Redis	Graph,	Memgraph,		
				CAPS	(Cypher	for	Apache	Spark),		
				ingraph,	Gradoop,		
				Ruruki,	Graphflow	

Running	Example	in	Cypher	

MATCH			(c1:Customer)	–[:Bought]->	(p:Product)		
																		<-[:Bought]-	(c2:Customer)	
	
WHERE				p.category	=	“Toys”	AND	c1.name	<	c2.name	
	
RETURN			c1.name	AS	cust1,		

	 						c2.name	AS	cust2,		
	 						COUNT	(p)		AS	inCommon	

c1.name,	c2.name	are	composite	group	key		
–	no	explicit	group-by	clause,	just	like	CQ	

Cypher	Semantics	by	Example	

•  Coincides	with	CRPQ	version	

					Q(c1,	c2,	count	(p))	:-	c1	–Bought->	p,	c2	–Bought->	p,		
																																												c1	<	c2	

•  Modulo	non-repeating	edge	restriction		
–  no	effect	here	since	repeated-edge	paths	satisfying	
the	two	PE	atoms	would	necessarily	have	c1	=	c2	

Gremlin	

	
•  Supported	by	major	Apache	projects	

– TinkerPop	and	JanusGraph		
	

•  Also	by	commercial	systems	including	
– TitanGraph	(DataStax)	
– Neptune	(Amazon),		
– Azure	(Microsoft),		
–  IBM	Graph	

Gremlin	Semantics	

•  Based	on	traversers,	i.e.	tokens	that	flow	through	graph	
binding	variables	along	the	way	

•  A	Gremlin	program	adorns	the	graph	with	a	set	of	
traversers	that	co-exist	simultaneously	

•  A	program	is	a	pipeline	of	steps,	each	step	works	on	the	set	
of	traversers	whose	state	corresponds	to	this	step	

•  Steps	can	be		
–  map	steps	(work	in	parallel	on	individual	traversers)	
–  reduce	steps	(aggregate	set	of	traversers	into	a	single	traverser)	

Gremlin	Semantics	by	Example	

V()	

place	one	traverser	on	each	vertex	

Gremlin	Semantics	by	Example	

V().hasLabel(‘Customer’)	

filter	traversers	by	label	

Gremlin	Semantics	by	Example	

V().hasLabel(‘Customer’).as(‘c1’)	
						

extend	each	traverser	t:		
bind	variable	‘c1’	to	the	vertex	where	t	resides		

Gremlin	Semantics	by	Example	

V().hasLabel(‘Customer’).as(‘c1’)	
					.out(‘Bought’)	

Traversers	flow	along	out-edges	of	type	‘Bought’.	
	

	If	multiple	such	edges	emanate	from	a	Customer	vertex	v,	
the	traverser	at	v	splits	into	one	copy	per	edge,	

	placed	at	edge	destination.	
	
	

Gremlin	Semantics	by	Example	

V().hasLabel(‘Customer’).as(‘c1’)	
					.out(‘Bought’).hasLabel(‘Product’).has(‘category’,’Toys’)	

filter	traversers	at	destination	of	‘Bought’	edges:	
vertex	label	must	be	‘Product’	and	they	must	have	a	

property	named	‘category’	of	value	‘Toys’	
	

Gremlin	Semantics	by	Example	

V().hasLabel(‘Customer’).as(‘c1’)	
					.out(‘Bought’).hasLabel(‘Product’).has(‘category’,’Toys’).as(‘p’)	
						

extend	surviving	traversers	with	binding	of	variable	‘p’	to	
their	location	vertex.	

now	each	surviving	traverser	has	two	variable	bindings:	
c1,	p	

Gremlin	Semantics	by	Example	

V().hasLabel(‘Customer’).as(‘c1’)	
					.out(‘Bought’).hasLabel(‘Product’).has(‘category’,’Toys’).as(‘p’)	
					.in(‘Bought’)	

Surviving	traversers	cross	incoming	edges	of	type	
‘Bought’.	Multiple	in-edges	result	in	further	splits.	

Gremlin	Semantics	by	Example	

V().hasLabel(‘Customer’).as(‘c1’)	
					.out(‘Bought’).hasLabel(‘Product’).has(‘category’,’Toys’).as(‘p’)	
					.in(‘Bought’).hasLabel(‘Customer’).as(‘c2’)	
	
.select	(‘c1’,	‘c2’,‘p’).by(‘name’)	

for	each	traverser	extract	the	tuple	of	bindings	for	variables	
c1,c2,p,	return	its	projection	on	‘name’	property.	

Gremlin	Semantics	by	Example	

V().hasLabel(‘Customer’).as(‘c1’)	
					.out(‘Bought’).hasLabel(‘Product’).has(‘category’,’Toys’).as(‘p’)	
					.in(‘Bought’).hasLabel(‘Customer’).as(‘c2’)	
	
.select	(‘c1’,	‘c2’,‘p’).by(‘name’)	
.where	(‘c1’,	lt(‘c2’))	
	

filter	these	tuples	according	to	where	condition	

Gremlin	Semantics	by	Example	

V().hasLabel(‘Customer’).as(‘c1’)	
					.out(‘Bought’).hasLabel(‘Product’).has(‘category’,’Toys’).as(‘p’)	
					.in(‘Bought’).hasLabel(‘Customer’).as(‘c2’)	
	
.select	(‘c1’,	‘c2’,‘p’).by(‘name’)	
.where	(‘c1’,	lt(‘c2’))	
	
.group().by(select(‘c1’,’c2’)).by(count())	

group	tuples	

first	by()	specifies	group	key	
second	by()	specifies	group	

aggregation	

GSQL	

•  The	query	language	of	TigerGraph,	a	native	
parallel	graph	db	system	

•  A	recent	start-up	founded	by	UCSD	DB	lab’s	
PhD	alum	Yu	Xu	

•  Full	disclosure:	I	have	been	involved	in	design	

GSQL	Accumulators	

•  GSQL	traversals	collect	and	aggregate	data	by	writing	it	into	
accumulators	

•  Accumulators	are	containers	(data	types)	that	
–  hold	a	data	value		
–  accept	inputs	
–  aggregate	inputs	into	the	data	value	using	a	binary	operation	

•  May	be	built-in	(sum,	max,	min,	etc.)	or	user-defined	

•  May	be		
–  global	(a	single	container	accessible	from	all	traversal	steps)	
–  local	(one	per	node,	accessible	only	when	reached	by	traversal)	

Running	Example	in	GSQL	
	
GroupByAccum		<string	cust1,	string	cust2,		
																																	SumAccum<int>	inCommon>				@@res;	
	
	
SELECT					_	
FROM						Customer:c1	-(Bought>)-	Product:p	–(<Bought)-	Customer:c2	
WHERE				p.category	==	“Toys”		AND		c1.name	<	c2.name	
ACCUM			@@res	+=	(c1.name,	c2.name	->	1);	
	

Global	accum	

cust1,	cust2	form	
composite	group	key	 inCommon	is	group	value	

(a	sum	aggregation)	

create	input	associating	value	1	to		key	
(c1.name,	c2.name)	

aggregate	this	input	into	
accumulator	

GSQL	Semantics	by	Example	
	
GroupByAccum		<string	cust1,	string	cust2,		
																																	SumAccum<int>	inCommon>				@@res;	
	
	
SELECT					_	
FROM						Customer:c1	-(Bought>)-	Product:p	–(<Bought)-	Customer:c2	
WHERE				p.category	==	“Toys”		AND		c1.name	<	c2.name	
ACCUM			@@res	+=	(c1.name,	c2.name	->	1);	
	

…execute	ACCUM	clause	

For	every	distinct	path	satisfying	FROM	
pattern	and	WHERE	condition…	

Why	Aggregate	in	Accumulators	Instead	of	
Select-Group	By	Clauses?	

	
GroupByAccum		<string	cust,	SumAccum<float>	total>		@@cSales;	
GroupByAccum		<string	prod,	SumAccum<float>	total>		@@pSales;	
	
	
SELECT							_	
FROM								Customer:c	-(Bought>:b)-	Product:p	
ACCUM					float	thisSalesRevenue	=	b.quantity*(1-b.discount)*p.price,	

	 						@@cSales	+=	(c.name	->	thisSalesRevenue),	
																			@@pSales	+=	(p.name	->	thisSalesRevenue);	
	
	

revenue	per	customer	

revenue	per	product	

multiple	aggregations	in	one	pass,	
even	on	different	group	keys	

local	variable,	this	is	a	let	clause	

Local	Accumulators	

•  Minimize	bottlenecks	due	to	shared	global	accums,	maximize	
opportunities	for	parallel	evaluation	

	
SumAccum<float>	@cSales,	@pSales;	
	
SELECT					_	
FROM						Customer:c	-(Bought>:b)-	Product:p	
ACCUM			float	thisSalesRevenue	=	b.quantity*(1-b.discount)*p.price,	
																	c.@cSales	+=	thisSalesRevenue,	
																	p.@pSales	+=	thisSalesRevenue;	

local	accums,	one	instance	per	node	

groups	are	distributed,	each	node	
accumulates	its	own	group	

Role	of	SELECT	Clause?	Compositionality	

•  queries	can	output	set	of	nodes,	stored	in	variables	
•  used	by	subsequent	queries	as	traversal	starting	point:	

S1	=	SELECT	t		
									FROM	S0:s	–	pattern1	–	T1:t					
									WHERE	… ACCUM	…	
	
S2	=	SELECT	t		
									FROM	S1:s	–	pattern2	–	T2:t	…	
									WHERE	… ACCUM	…	
	
S3	=	SELECT	t		
									FROM	S1:s	–	pattern3	–	T3:t	…	
									WHERE	… ACCUM	…	

Variable	S1	stores	set	of	nodes	
reached	in	traversal	

Node	set	variable	used	in	
subsequent	traversal		S1	used	in	subsequent	traversals	
(query	chaining)	

Recommended	Toys	Ranked	by		
Log-Cosine	Similarity	

SumAccum<float> @rank, @lc;
SumAccum<int> @inCommon;
	
I = {Customer.1};
ToysILike, OthersWhoLikeThem	=	

	SELECT 	 			p, o
	FROM 	 			I:c	-(Likes>)-	Product:p -(<Likes)-	Customer:o
	WHERE 	 			p.category	== “Toys” and o != c
	ACCUM 	 			o.@inCommon +=	1
	POST-ACCUM o.@lc = log	(1 + o.@inCommon);

ToysTheyLike = SELECT 					t
	 	 			 		FROM 					OthersWhoLikeThem:o –(Likes>)-	Product:t
	 	 				 		WHERE 					t.category == "toy"
	 	 			 		ACCUM 					t.@rank	+= o.@lc;	
	 	 	 		

RecommendedToys	= ToysTheyLike – ToysILike;	

Control	Flow	Primitives	

Loops	Are	Essential	

•  Loops	(until	condition	is	satisfied)	
–  Explicitly	supported	in	Gremlin	and	GSQL	

– Necessary	to	program	iterative	algorithms	like	
PageRank,	recommender	systems,	shortest-path,	etc.		

–  Can	be	used	to	program	match	of	Kleene-starred	path	
expressions	under	various	semantics	

•  If-then-else,	case	constructs	
–  Supported	by	all	QLs	in	some	way	

PageRank	in	GSQL	

CREATE	QUERY	pageRank	(float	maxChange,	int	maxIteration,	float	dampingFactor)	{	
	
		MaxAccum<float>	@@maxDifference	=	9999;		//	max	score	change	in	an	iteration	
		SumAccum<float>	@received_score	=	0;											//	sum	of	scores	received	from	neighbors	
		SumAccum<float>	@score	=	1;																													//	initial	score	for	every	vertex	is	1.	
	
		AllV	=	{Page.*};																																																									//	start	with	all	vertices	of	type	Page	
		WHILE	@@maxDifference	>	maxChange	LIMIT	maxIteration	DO	
				@@maxDifference	=	0;	
	
					S=	SELECT														s	
										FROM																AllV:s	-(Linkto)->	:t	
										ACCUM													t.@received_score	+=	s.@score/s.outdegree()	
										POST-ACCUM		s.@score	=	1-dampingFactor	+	dampingFactor	*	s.@received_score,	
																																					s.@received_score	=	0,	
																																					@@maxDifference	+=			abs(s.@score	-	s.@score');	
		END;	
}	

Low-level,	NoSQL-style	
Programming	for		

Parallel	Graph	Analytics	

Think-Like-a-Vertex	(TLAV)		
aka	Vertex-Centric	

•  Parallel	computing	abstraction	

•  Conceptually,	each	vertex	is	a	processor	

•  Vertices	execute	a	vertex	program	in	parallel	

•  Instances	of	vertex	programs	communicate	via	
messages	to	neighbors	

•  Vertices	typically	execute	in	lockstep	(via	
synchronization	barriers)	

Pregel:	A	TLAV	Programming	Abstraction	

•  Bulk-synchronous	parallel	computing	abstraction	

•  Introduced	by	Pregel	System	(Google)	
•  Supported	in	open-source	systems	

–  e.g.	Giraph	(Apache),	GraphX	(Apache	Spark)	

•  Pregel	program	executes	in	lockstep	a	series	of	supersteps	

•  During	each	superstep,	vertices	(in	parallel)	
–  receive	inbound	messages	sent	in	previous	superstep,		
–  compute	a	new	value	for	the	vertex	data	
–  	send	messages	to	neighboring	vertices	(received	in	next	
superstep)	

Gather-Apply-Scatter	(GAS)	

•  Isomorphic	with	Pregel	when	vertices	evaluate	in	lockstep	
•  Also	supports	asynchronous	evaluation	

•  Introduced	by	GraphLab	system	(an	open-source	project)	

•  Each	vertex	program	step	is	organized	in	three	phases:	
–  Gather:	may	directly	access	information	from	its	one-hop	
neighborhood,	aggregating	it	with	user-defined	function	

–  Apply:	vertex	value	is	updated	by	incorporating	this	sum	
–  Scatter:	neighborhood	values	updated	using	result	of	apply	phase	

•  Communication	abstraction:	shared	memory,	not	messaging	

PowerGraph	

•  Refinement	of	GAS	abstraction	to	process	edges	in	parallel	
–  for	load	balancing	in	presence	of	high-degree	vertices	

•  Gather	phase	executes	a	function	that	maps	over	edges	

•  Results	of	edge	map	are	reduced	by	a	user-defined	Sum	
function	

•  Apply	phase	uses	the	reduced	result	

•  Only	edges	incident	on	active	vertices	work.		
–  Vertices	can	be	explicitly	activated	during	scatter	phase.	

	

GSQL’s	Edge-Map/Vertex-Reduce	(EM/VR)	

•  Extends	PowerGraph	for	flexibility		
– user	can	define	multiple	independent	reducers	via	
accumulators	

– accums	can	be	local	or	global	
– accums	are	first-class	citizens	

•  persist	across	steps,	can	be	mentioned	by	future	steps	

– parallel	map	over	edges	generates	accum	inputs	
–  reduce	phase	updates	each	accum	value	by	
aggregating	all	inputs	into	it		

GSQL	As	High-level	EM/VR	Program	

SumAccum<float>	@cSales,	@pSales;	
	
	
	
	
SELECT					p	
FROM						Customer:c	-(Bought>:b)-	Product:p	
ACCUM			float	thisSalesRevenue	=	b.quantity*(1-b.discount)*p.price,	
																	c.@cSales	+=	thisSalesRevenue,	
																	p.@pSales	+=	thisSalesRevenue;	

local	accums	implement	two	
independent	reducers	

FROM	clause	filters	edges	
undergoing	map	

ACCUM	clause	executes	per	edge,	
generates	accum	inputs	

SELECT	clause	specifies	vertex	to	
activate	next	

Summary	

•  We	discussed	representative	high-level	graph	QLs		
–  from	point	of	view	of	expressive	power	and	semantics		
–  de-emphasizing	syntax	

•  We	have	seen	NoSQL-style	low-level	parallel	graph	
programming	abstractions	

•  No	need	to	choose	between	high-level	and	low-level	
(false	choice	claimed	by	prior	NoSQL-related	debates)	
–  abstraction	levels	can	be	harmonized	(as	shown	for	GSQL)	

Topics	Not	Covered	Here	

•  Creating/modifying	vertices	and	edges	
– As	opposed	to	just	returning	tables	of	variable	
bindings	

•  Non-scalar	vertex	and	edge	properties	(these	can	
be	lists/arrays	and	other	containers)	

•  Behavior	when	a	vertex/edge	property	does	not	
exist	(options	are	comprehensively	laid	out	in	
Part	A	on	hierarchical	graph	model)	

•  Graph	schemas	
	

