
2/18/17	

1	

1

Recap: Which indices you should
consider for selection queries?

Find first names and last
names of all students
SELECT first_name, last_name
FROM students;
Find all students whose first
name is John; project all
attributes
SELECT *
FROM students
WHERE first_name = 'John';

No index is useful

•  Index when a
selection query
involves a condition
<attribute> =
<value>

•  also when
<attribute> = ?

Find the student whose ID is ?
SELECT *
FROM students
WHERE ID = ?;
Find the enrollments of the
student whose ID is ?
SELECT *
FROM enrollment
WHERE student = ?;

index on first name
assuming there are plenty of
first names, i.e., few tuples

per first name

index on ID,
already
created

index on student, assuming each
student has a relatively small

fraction of the total enrollments

2

Queries with Selections and Joins:
Which indices you should try?

SELECT students.pid, students.first_name,
 students.last_name, enrollment.credits

FROM students, enrollment
WHERE students.id = enrollment.student
 AND enrollment.class = ? ;

Index on enrollment.class assuming most
queried classes have relatively few enrollments

compared to total enrollments,
and index on students.id (default) assuming the

students taking the queried class are a small
fraction of the total students

3

 One selection and two joins: which
indices to consider?

SELECT students.pid, students.first_name,
 students.last_name, enrollment.credits

FROM students, enrollment, classes
WHERE classes.number = 'CSE135'
 AND students.id = enrollment.student
 AND enrollment.class = classes.id ;

Produce a table that shows
the pid, first name and last
name of every student
enrolled in the CSE135 class
along with the number of
credit units in his/her 135
enrollment

Create indices on
classes.number (assuming many

classes),
enrollment.class

students.id (default), with the latter
two posing similar considerations to

prior example

2/18/17	

2	

4

Many selections and many joins: which
indices are useful

SELECT c_others.name, first_name, last_name
FROM classes AS c_135, enrollment AS e_135,

 students,
 enrollment AS e_others, classes AS c_others

WHERE c_135.number = 'CSE135'
 AND c_135.id = e_135.class
 AND e_135.student = students.id
 AND students.id = e_others.student
 AND e_others.class = c_others.id
 AND NOT (c_others.number = 'CSE135')

produce a table where each row has the name of a 135 student and
the name of another class he/she takes

Index on classes.number, enrollment.class, students.id (similar
considerations to prior example), perhaps

enrollment.student (if the enrollments of CSE135 students are not a
larger fraction of total enrollments),

perhaps classes.id (if the enrollments of CSE135 students are a
small fraction of total enrollments), perhaps classes.id (if the classes

of CSE135 students are a small fraction of total classes)

5

Should you use an index in a plain
aggregation query? Likely Not

•  Find the average salary in each department that has
more than 1 employee:

 SELECT Dept,AVG(Salary) AS AvgSal
 FROM Employee
 GROUP BY Dept
 HAVING COUNT(Name) >1

The grouping on Dept can use an index on Dept to order the tuples
and group them faster. However, this use case is unlikely to produce

massive performance difference

6

Should you use an index here?
Most likely No

•  Problem: List all enrolled students and the
number of total credits for which they have
registered

SELECT students.id, first_name, last_name, SUM(credits)
FROM students, enrollment
WHERE students.id = enrollment.student
GROUP BY students.id, first_name, last_name

•  Caveat: In the unlikely case where the vast majority of

this university’s students are not enrolled in any class (!)
the index on students.id becomes useful

2/18/17	

3	

7

Should you consider an index here?
Yes

•  Problem: List all the classes (id’s only) in which
students of the class “?” are enrolled and also
show the number of students (of the class “?”)
in each one of them. (The “?” is a parameter
that will be changed into a class id when a query
is executed.)

SELECT e_others.class, COUNT(e.student)
FROM enrollment e, enrollment e_others
WHERE e.class = ?
 AND e.student = e_others.student
GROUP BY e_others.class

enrollment.class,
enrollment.student

8

Exercise:
Which indices are needed here?

Sample TPC-H Schema
Nation(NationKey, NName)
Customer(CustKey, CName, NationKey)
Order(OrderKey, CustKey, Status)
Lineitem(OrderKey, PartKey, Quantity)
Product(SuppKey, PartKey, PName)
Supplier(SuppKey, SName)

SELECT SName
FROM Nation, Customer, Order, LineItem, Product, Supplier
WHERE Nation.NationKey = Cuctomer.NationKey

 AND Customer.CustKey = Order.CustKey
 AND Order.OrderKey=LineItem.OrderKey
 AND LineItem.PartKey= Product.Partkey
 AND Product.Suppkey = Supplier.SuppKey
 AND NName = “Canada”

Find the names of
suppliers that sell

a product that
appears in a line
item of an order

made by a
customer who is

in Canada

9

3 ways to avoid the cold Vs warm
problem

•  Reset computer after the first run
–  Bulletproof but takes time to reset for each experiment

•  Flush the relevant pages out of the cache by running a
query on an irrelevant very large table. Example:
–  Create “irrelevant” table H with integer attribute S. The table H

must be larger than the RAM of your system. Then run the
query QL = SELECT SUM(S) FROM H

–  The query will fetch all pages of H from disk to RAM and will
most likely remove from RAM any pages that were there before

–  Not fully bulletproof: Database buffer managers sometimes do
not use “Least Recently Used” strategy. Check if you get the
same performance for the same experiment before/after QL

•  Run experiments in different databases that have
identical data
–  Make many copies of the database. Reset.
–  Each experiment should use another database

