
1

Understanding the Execution of
Analytics Queries & Applications

MAS DSE 201

2

SQL as declarative programming

•  SQL is a declarative programming language:
–  The developer’s / analyst’s query only describes what

result she wants from the database
–  The developer does not describe the algorithm that the

database will use in order to compute the result
•  The database’s optimizer automatically decides

what is the most performant algorithm that
computes the result of your SQL query

•  “Declarative” and “automatic” have been the
reason for the success and ubiquitous presence
of database systems behind applications
–  Imagine trying to come up yourself with the algorithms

that efficiently execute complex queries. (Not easy.)

3

What do you have to do to increase the
performance of your db-backed app?

•  Does declarative programming mean the developer
does not have to think about performance?
–  After all, the database will automatically select the most

performant algorithms for the developer’s SQL queries

•  No, challenging cases force the A+ SQL
developer / analyst to think and make choices,
because…
– Developer decides which indices to build
– Database may miss the best plan: Developer has

to understand what plan was chosen and work
around

2

4

Diagnostics

•  You need to understand a few things about the
performance of your query:

1.  Will it benefit from indices? If yes, which are
the useful indices?

2.  Has the database chosen a hugely suboptimal
plan?

3.  How can I hack it towards the efficient way?

Boosting performance with indices
(a short conceptual summary)

6

How/when does an index help? Running
selection queries without an index

SELECT *
FROM R
WHERE R.A = ?

Consider a table R with n tuples
and the selection query

… A …

5

22

3

8

22

42

5

2

n tuples …

R

In the absence of an index
the Big-O cost of evaluating

an instance of this query
is O(n) because the database will
need to access the n tuples and

check the condition
R.A = <provided value>

3

7

How/when does an index help?
Running selection queries with an index

SELECT *
FROM R
WHERE R.A = ?

Consider a table R with n tuples, an index on R.A
and assume that R.A has m distinct values.
We issue the same query and assume the database uses the index.

… A …

5

22

3

8

22

42

5

2

n tuples …

R

In
de

x
on

 R
.A

An index on R.A is a data structure
that answers very efficiently the request
“find the tuples with R.A = c”
Then a query is answered in time O(k)
where k is the number of tuples with R.A = c.
Therefore the expected time to answer a selection query is O(n/m)

Example request: Return pointers
to tuples with R.A = 5

8

The mechanics of indices:
How to create an index

After you have created table students, issue command
CREATE INDEX students_first_name ON students(first_name)

DROP INDEX students_first_name

Primary keys get an index automatically

How to create an index on R.A ?
After you have created table R, issue command

CREATE INDEX myIndexOnRA ON R(A)

How to remove the index you previously created ?
DROP INDEX myIndexOnRA

Exercise: Create and then drop an index on
Students.first_name of the enrollment example

9

The mechanics of indices:
How to use an index in a query

•  You do not have to change your SQL queries in
order to direct the database to use (or not use)
the indices you created.
–  All you need to do is to create the index! That’s easy…

•  The database will decide automatically whether
to use (or not use) a created index to answer
your query.

•  It is possible that you create an index x but the
database may not use it if it judges that there is
a better plan (algorithm) for answering your
query, without using the index x.

4

10

Given condition on attribute find qualified
records

Attr = value

Condition may also be
•  Attr>value
•  Attr>=value

Indexing will help any query step
when the problem is…

?	 value
Qualified records

value
value

Indexing
•  Data Stuctures used for quickly locating tuples that

meet a specific type of condition
–  Equality condition: find Movie tuples where Director=X
–  Other conditions possible, eg, range conditions: find

Employee tuples where Salary>40 AND Salary<50
•  Many types of indexes. Evaluate them on

–  Access time
–  Insertion time
–  Deletion time
–  Space needed (esp. as it effects access time and or

ability to fit in memory)

Should I build an index? In the presence of
updates, the benefit of an index has to take

maintenance cost into account

… A …

5

22

3

8

22

42

5

2

n tuples …

R

In
de

x
on

 R
.A

New

tu
ple

s

5

In OLAP it seems beneficial to create an index
on R.A whenever m>1

SELECT *
FROM R
WHERE R.A = ?

Recall: Table R with n tuples, an index on R.A
and assume that R.A has m distinct values

… A …

5

22

3

8

22

42

5

2

n tuples …

R

In
de

x
on

 R
.A

The expected time to answer
the selection query without index is O(n)
and with index is O(n/m)
It appears that an index is beneficial if m>1
but if database stored in secondary storage you will need m>>1
because the cost is blocks!

To Index or Not to Index

•  Which queries can use indices and how?
•  What will they do without an index?

– Some surprisingly efficient algorithms that
do not use indices

14

Understanding Storage and
Memory

6

16

Memory Hierarchy
•  Cache memory

–  On-chip and L2
–  Increasingly important

•  RAM (controlled by db system)
–  Addressable space includes virtual

memory but DB systems avoid it

•  SSDs
–  Block-based storage

•  Disk
–  Block
–  Preference to sequential access

•  Tertiary storage for archiving
–  Tapes, jukeboxes, DVDs
–  Does not matter any more

Co
st

 p
er

 b
yt

e

Capacity

Ac
ce

ss
 S

pe
ed

17

Non-Volatile Storage is important to
OLTP even when RAM is large

•  Persistence important for transaction
atomicity and durability

•  Even if database fits in main memory
changes have to be written in non-
volatile storage

•  Hard disk
•  RAM disks w/ battery
•  Flash memory

18

Peculiarities of storage mediums
affect algorithm choice

•  Block-based access:
– Access performance: How many blocks

were accessed
– How many objects
– Flash is different on reading Vs writing

•  Clustering for sequential access:
– Accessing consecutive blocks costs less on

disk-based systems

•  We will only consider the effects of
block access

7

19

Moore’s Law: Different Rates of
Improvement Lead to Algorithm &

System Reconsiderations

•  Processor speed
•  Main memory bit/$
•  Disk bit/$
•  RAM access speed
•  Disk access speed
•  Disk transfer rate

D
is

k
Tr

an
sf

er
 R

at
e

D
is

k
 A

cc
es

s
 S

pe
ed

Clustered/sequential
access-based algorithms
for disk became relatively

better

20

Moore’s Law: Same
Phenomenon Applies to RAM

RA
M

 T
ra

ns
fe

r
Ra

te

RA
M

 A

cc
es

s
 S

pe
ed

Algorithms that access
memory sequentially
have better constant

factors than algorithms
that access randomly

2-Phase Merge Sort: An algorithm
tuned for blocks (and sequential access)

P K A D L E Z W J C R H Y F X I

Assume a file with many records.
Each record has a key and other data.
For ppt brevity, the slide shows only the
key of each record and not its data.
Assume each block has 2 records.
Assume RAM buffer fits 4 blocks (8 records)
In practice, expect many more records
per block and many more records fitting in buffer.

record
key

file

block

Problem: Sort the records according to the key.
Morale: What you learnt in algorithms and data
structures is not always the best when we
consider block-based storage

RAM buffer

8

22

2-Phase Merge Sort

P K A D L E Z W J C R H

A D K P

SORT
in place, eg
quicksort

A D E K

READ

WRITE

Y F X I

P K A D L E Z W

L D K P P W Z A D K P A D E K L D K P P W Z

Phase 1, round 1

RAM buffer

Secondary storage

23

2-Phase Merge Sort

P K A D L E Z W J C R H

SORT

A D K P

SORT

C F H I

READ

WRITE

Y F X I

J C R H Y F X I

J D K P R X Y

A D K P A D E K L D K P P W Z

C F H I J R X Y

Phase 1, round 2
Phase 2 continues
until no more records

RAM buffer Secondary storage

1st file

2nd file

In practice, probably many more Phase 1 rounds and
many respective output files

24

2-Phase Merge Sort

P K A D L E Z W J C R H

M
ER

G
E

Y F X I

A D K P A D E K L D K P P W Z

C F H I J R X Y

A D K P A C D E …

Improvement: Bring max number of blocks in memory.

Phase 2
Assume #files < #blocks that fit in RAM buffer.
Fetch the first block of each file in RAM buffer.
Merge records and output.
When all records of a block have been output,
 bring next block of same file

9

2-Phase Merge Sort: Most files can be
sorted in just 2 passes!

Assume
•  M bytes of RAM buffer (eg, 8GB)
•  B bytes per block (eg, 64KB for disk, 4KB for SSD)
Calculation:
•  The assumption of Phase 2 holds when #files < M/B
=> there can be up to M/B Phase 1 rounds
•  Each round can process up to M bytes of input data
=> 2-Phase Merge Sort can sort M2/B bytes

–  eg (8GB)2/64KB = (233B)2 / 216B= 250B = 1PB

Horizontal placement of SQL
data in blocks

Relations:
•  Pack as many tuples per block

–  improves scan time

•  Do not reclaim deleted records
•  Utilize overflow records if relation must

be sorted on primary key
•  A novel generation of databases

features column storage
–  to be discussed late in class

26

Sample relational database

id pid first_name last_name
1 8888888 John Smith
2 1111111 Mary Doe
3 2222222 null Chen

Students

id name number date_code start_time end_time
1 Web stuff CSE135 TuTh 2:00 3:20
2 Databases CSE132A TuTh 3:30 4:50
4 VLSI CSE121 F null null

Classes

id class student credits
1 1 1 4
2 1 2 3
3 4 3 4
4 1 3 3

Enrollment

10

Pack maximum #records per
block

28

id name number date_code start_time end_time
1 Web CSE135 TuTh 2:00 3:20
2 Databases CSE132A TuTh 3:30 4:50
4 VLSI CSE121 F null null

Classes

2 Databases CSE132A TuTh 3:30 4:50 1 Web CSE135 TuTh 2:00 3:20 4 VLSI CSE121 F 3:30 4:50

“pack” each block with maximum # records

Utilize overflow blocks for insertions
with “out of order” primary keys

29

id name number date_code start_time end_time
1 Web CSE135 TuTh 2:00 3:20
2 Databases CSE132A TuTh 3:30 4:50
3 PL CSE130 TuTh 9:00 9:50
4 VLSI CSE121 F null null

Classes

2 Databases CSE132A TuTh 3:30 4:50 1 Web CSE135 TuTh 2:00 3:20 4 VLSI CSE121 F 3:30 4:50

just inserted
tuple

3 PL CSE130 TuTh 9:00 9:50

Overflow block

30

… back to Indices, with secondary
storage in mind

•  Conventional indexes
– As a thought experiment

•  B-trees
– The workhorse of most db systems

•  Hashing schemes
– Briefly covered

•  Bitmaps
– An analytics favorite

11

Terms and Distinctions
•  Primary index

–  the index on the attribute
(a.k.a. search key) that
determines the
sequencing of the table

•  Secondary index
–  index on any other

attribute

•  Dense index
–  every value of the

indexed attribute appears
in the index

•  Sparse index
–  many values do not

appear

10
20
30
40

10
20
30
40
50
70
80
90
100
120

50
70
80
90

A Dense Primary Index

100
120
140
150

Sequential
File

Dense and Sparse Primary
Indexes

10
20
30
40

10
20
30
40
50
70
80
90
100
120

50
70
80
90

Dense Primary Index

100
120
140
150

Sparse Primary Index

10
30
50
80
100
140
160
200

10
20
30
40
50
70
80
90
100
120

Find the index record with largest
value that is less or equal to the

value we are looking.
+ can tell if a value exists without

 accessing file (consider projection)
+ better access to overflow records

+ less index space

more + and - in a while

33

Sparse vs. Dense Tradeoff

•  Sparse: Less index space per record
 can keep more of index

in memory
•  Dense: Can tell if any record exists

 without accessing file

(Later:

–  sparse better for insertions
–  dense needed for secondary indexes)

12

Multi-Level Indexes

•  Treat the index as
a file and build an
index on it

•  “Two levels are
usually sufficient.
More than three
levels are rare.”

•  Q: Can we build a
dense second level
index for a dense
index ?

10
30
50
80
100
140
160
200

10
20
30
40
50
70
80
90
100
120

10
100
250
400

250
270
300
350
400
460
500
550

600
750
920
1000

A Note on Pointers

•  Record pointers consist of block pointer
and position of record in the block

•  Using the block pointer only, saves
space at no extra accesses cost

•  But a block pointer cannot serve as
record identifier

Representation of Duplicate
Values in Primary Indexes

•  Index may point to
first instance of each
value only

10
40
70
100

10
10
10
40
40
70
70
70
100
120

13

Deletion from Dense Index

10
20
30

10
20
30

50
70

90
100
120

50
70

90

Delete 40, 80

Header
Header

Lists of available entries

•  Deletion from dense
primary index file
with no duplicate
values is handled in
the same way with
deletion from a
sequential file

•  Q: What about
deletion from dense
primary index with
duplicates

Deletion from Sparse Index

•  if the deleted entry
does not appear in
the index do nothing

10
30
50
80
100
140
160
200

10
20
30

50
70
80
90
100
120

HeaderDelete 40

Deletion from Sparse Index
(cont’d)

•  if the deleted entry
does not appear in the
index do nothing

•  if the deleted entry
appears in the index
replace it with the next
search-key value
–  comment: we could leave

the deleted value in the
index assuming that no
part of the system may
assume it still exists
without checking the
block

Delete 30

10
40
50
80
100
140
160
200

10
20

40
50
70
80
90
100
120

Header

14

Deletion from Sparse Index
(cont’d)

•  if the deleted entry
does not appear in the
index do nothing

•  if the deleted entry
appears in the index
replace it with the next
search-key value

•  unless the next search
key value has its own
index entry. In this case
delete the entry

Delete 40, then 30

10

50
80
100
140
160
200

10
20

50
70
80
90
100
120

HeaderHeader

Insertion in Sparse Index

•  if no new block is
created then do
nothing

10
30
50
80
100
140
160
200

10
20
30
35

 50
70
80
90
100
120

Header
Insert 35

42

Insertion in Sparse Index

•  if no new block is
created then do nothing

•  else create overflow
record
–  Reorganize periodically
–  Could we claim space of

next block?
–  How often do we

reorganize and how
much expensive it is?

–  B-trees offer convincing
answers

10
30
50
80

 100
140
160
200

10
20
30

 50
70
80
90
100
120

Header
Insert 15

15

43

Secondary indexes

Sequence
field

50

30

70

20

40

80

10

100

60

90

File not sorted on
secondary search key

44

Secondary indexes

Sequence
field

50

30

70

20

40

80

10

100

60

90

•  Sparse index

30
20
80
100

90
...

does not make sense!

45

Secondary indexes

Sequence
field

50

30

70

20

40

80

10

100

60

90

•  Dense index

10
20
30
40

50
60
70
...

10
50
90
...

sparse
high
level

First level has to be dense,
next levels are sparse (as usual)

16

46

Duplicate values & secondary indexes

10

20

40

20

40

10

40

10

40

30

47

Duplicate values & secondary indexes

10

20

40

20

40

10

40

10

40

30

10
10
10
20

20
30
40
40

40
40
...

one option...

Problem:
excess overhead!

•  disk space
•  search time

48

Duplicate values & secondary indexes

10

20

40

20

40

10

40

10

40

30

10
another option: lists of pointers

40
30

20 Problem:
variable size
records in

index!

17

49

Duplicate values & secondary indexes

10

20

40

20

40

10

40

10

40

30

10
20
30
40

50
60
...

λ

λ

λ

λ
Yet another idea :

Chain records with same key?
Problems:

•  Need to add fields to records, messes up maintenance
•  Need to follow chain to know records

50

Duplicate values & secondary indexes

10

20

40

20

40

10

40

10

40

30

10
20
30
40

50
60
...

buckets

51

Why “bucket” + record pointers is
useful

Indexes Records
Name: primary EMP (name,dept,year,...)

Dept: secondary
Year: secondary

•  Enables the processing of queries working
 with pointers only.

•  Very common technique in Information
 Retrieval

18

Advantage of Buckets: Process
Queries Using Pointers Only

Find employees of the Toys dept with 4 years in the company
SELECT Name FROM Employee

WHERE Dept=“Toys” AND Year=4

Toys
PCs
Pens
Suits

Dept Index
Aaron Suits 4
Helen Pens 3
Jack PCs 4
Jim Toys 4
Joe Toys 3
Nick PCs 2
Walt Toys 5
Yannis Pens 1

1
2
3
4

Year Index

Intersect toy bucket and
2nd Floor bucket to get
set of matching EMP’s

53

This idea used in
 text information retrieval

Documents
...the cat is
 fat ...

...my cat and my
dog like each

other...
...Fido the
 dog ... Buckets known as

Inverted lists

cat

dog

Summary of Indexing So Far
•  Basic topics in conventional indexes

– multiple levels
– sparse/dense
– duplicate keys and buckets
– deletion/insertion similar to sequential files

•  Advantages
– simple algorithms
–  index is sequential file

•  Disadvantages
– eventually sequentiality is lost because of

overflows, reorganizations are needed

19

55

Example Index (sequential)

 continuous

 free space

10
20
30

40
50
60

70
80
90

39
31
35
36

32
38
34

33

overflow area
(not sequential)

56

Outline:

•  Conventional indexes
•  B-Trees ⇒ NEXT
•  Hashing schemes

57

•  NEXT: Another type of index
– Give up on sequentiality of index
– Try to get “balance”

20

58

Root

B+Tree Example n=3

10
0

12
0

15
0

18
0

30

3 5 11

30

35

10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

59

Sample non-leaf

to keys to keys to keys to keys

< 57 57≤ k<81 81≤k<95 ≥95

57

 81

 95

60

Sample leaf node:

 From non-leaf node

 to next leaf
 in sequence 57

 81

 95

To
 r

ec
or

d

w
ith

 k
ey

 5
7

To

 r
ec

or
d

w

ith
 k

ey
 8

1

To
 r

ec
or

d

w
ith

 k
ey

 8
5

21

61

In textbook’s notation n=3

Leaf:

Non-leaf:

30

35

30

30 35

30

62

Size of nodes: n+1 pointers
 n keys (fixed)

63

Non-root nodes have to be at least
half-full

•  Use at least

Non-leaf: ⎡(n+1)/2⎤ pointers

Leaf: ⎣(n+1)/2⎦ pointers to data

22

64

 Full node min. node

Non-leaf

Leaf

n=3

12
0

15
0

18
0

30

3 5 11

30

35

65

B+tree rules tree of order n

(1) All leaves at same lowest level
 (balanced tree)

(2) Pointers in leaves point to records
 except for “sequence pointer”

66

(3) Number of pointers/keys for B+tree

Non-leaf
(non-root) n+1 n ⎡(n+1)/2⎤ ⎡(n+1)/2⎤- 1

Leaf (non-root) n+1 n

Root n+1 n 1 1

Max Max Min Min
ptrs keys ptrs→data keys

⎣(n+1)/2⎦ ⎣(n+1)/2⎦

23

67

Insert into B+tree

(a) simple case
–  space available in leaf

(b) leaf overflow
(c) non-leaf overflow
(d) new root

68

(a) Insert key = 32 n=3

3 5 11

30

31

30

10
0

32

69

(a) Insert key = 7 n=3

3 5 11

30

31

 30

10
0

3 5

7

7

24

70

(c) Insert key = 160

n=3
10

0

12
0

15
0

18
0

15
0

15
6

17
9

18
0

20
0

16
0

18
0

16
0

17
9

71

(d) New root, insert 45 n=3

10

20

30

1 2 3 10

12

20

25

30

32

40

40

45

40

30

new root

72

(a) Simple case - no example

(b) Coalesce with neighbor (sibling)

(c) Re-distribute keys
(d) Cases (b) or (c) at non-leaf

Deletion from B+tree

25

73

(b) Coalesce with sibling
– Delete 50

10

40

10
0

10

20

30

 40

50

n=4

40

74

(c) Redistribute keys
– Delete 50

10

40

10
0

10

20

30

35

 40

50

n=4

35

35

75

40

45

30

37

25

26

 20

22

10

14

1 3

10

20

 30

40

(d) Non-leaf coalese
– Delete 37

n=4

40

30

25

25

new root

26

76

B+tree deletions in practice

– Often, coalescing is not implemented
–  Too hard and not worth it!

77

Is LRU a good policy for B+tree buffers?

→ Of course not!
→ Should try to keep root in

memory
 at all times

(and perhaps some nodes from second
level)

78

Hardware+ indexing problem:

 For B+tree, how large should n be?

…

n is number of keys / node

27

Assumptions

•  You have the right to set the block size for
the disk where a B-tree will reside.

•  Compute the optimum page size n assuming
that
–  The items are 4 bytes long and the pointers are

also 4 bytes long.
–  Time to read a node from disk is 12+.003n
–  Time to process a block in memory is unimportant
–  B+tree is full (I.e., every page has the maximum

number of items and pointers

80

➸Can get:
 f(n) = time to find a record

f(n)

 nopt n

81

➸ FIND nopt by f’(n) = 0

 Answer should be nopt = “few hundred”

➸ What happens to nopt as

• Disk gets faster?
• CPU get faster?

28

82

Outline/summary

•  Conventional Indexes
• Sparse vs. dense
• Primary vs. secondary

•  B+ trees
•  Hashing schemes --> Next
•  Bitmap indices

Hashing

•  hash function h(key)
returns address of
bucket

•  if the keys for a
specific hash value
do not fit into one
page the bucket is a
linked list of pages

key h(key)

Buckets Records

key

84

Example hash function

•  Key = ‘x1 x2 … xn’ n byte character string
•  Have b buckets
•  h: add x1 + x2 + ….. xn

–  compute sum modulo b

29

85

➽ This may not be best function …
➽ Read Knuth Vol. 3 if you really

 need to select a good function.

Good hash ? Expected number of
 function: keys/bucket is the

 same for all buckets

86

Within a bucket:

•  Do we keep keys sorted?

• Yes, if CPU time critical
 & Inserts/Deletes not too

frequent

87

Next: example to illustrate
 inserts,

overflows, deletes

 h(K)

30

88

EXAMPLE 2 records/bucket

INSERT:
h(a) = 1
h(b) = 2
h(c) = 1
h(d) = 0

0

1

2

3

d

a
c
b

h(e) =
1

e

89

0

1

2

3

a

b
c
e

d

EXAMPLE: deletion

Delete:
e
f

f
g

maybe move
“g” up

c
d

90

Rule of thumb:
•  Try to keep space utilization
 between 50% and 80%

 Utilization = # keys used
 total # keys that fit

•  If < 50%, wasting space
•  If > 80%, overflows

significant depends
on how good hash

 function is & on # keys/bucket

31

91

How do we cope with growth?

•  Overflows and reorganizations
•  Dynamic hashing

• Extensible
• Linear

92

Extensible hashing: two ideas

(a) Use i of b bits output by hash function
 b

 h(K) →

 use i → grows over time….

00110101

93

(b) Use directory

h(K)[0-i] to bucket

. . .

. . .

32

Example: h(k) is 4 bits; 2 keys/bucket

i = 1
1

1

0001

1001

1100

“slide” conventions:
•  slide shows h(k), while actual directory has key+pointer

95

Example: h(k) is 4 bits; 2 keys/bucket

i = 1
1

1

0001

1001

1100

Insert
1010

1
1100

1010

New directory

2
00

01

10

11

i =

2

2

96

1
0001

2
1001

1010

2
1100

Insert:

0111

0000

00

01

10

11

2 i =

Example continued

0111

0000

0111

0001

2

2

33

97

00

01

10

11

2 i =

2 1001

1010

2 1100

2 0111

2 0000

0001

Insert:

1001

Example continued

1001

1001

1010

000

001

010

011

100

101

110

111

3 i =

3

3

98

Extensible hashing: deletion

•  No merging of blocks
•  Merge blocks

 and cut directory if possible
 (Reverse insert procedure)

99

Deletion example:

•  Run thru insert example in reverse!

34

100

 Extensible hashing

 Can handle growing files
 - with less wasted space
 - with no full reorganizations

Summary

+

 Indirection
 (Not bad if directory in memory)

 Directory doubles in size
 (Now it fits, now it does not)

-

-

101

Linear hashing
•  Another dynamic hashing scheme

Two ideas:

(a) Use i low order bits of
hash 01110101

grows

b

i

(b) File grows linearly

102

Example b=4 bits, i =2, 2 keys/bucket

00 01 10 11

0101
1111

0000
1010

m = 01 (max used block)

Future
growth
buckets

If h(k)[i] ≤ m, then
 look at bucket h(k)[i]

 else, look at bucket h(k)[i] -
2i -1

Rule

0101
•  can have overflow chains!
•  insert 0101

35

103

Example b=4 bits, i =2, 2 keys/bucket

00 01 10 11

0101
1111

0000
1010

m = 01 (max used block)

Future
growth
buckets

10

1010

0101 •  insert 0101

11

1111
0101

104

Example Continued: How to grow beyond this?

00 01 10 11

1111 1010 0101
0101

0000

m = 11 (max used block)

i = 2

0 0 0 0
100 101 110 111

3

. . .

100

100

101

101
0101
0101

105

•  If U > threshold then increase m
 (and i, when m reaches 2i)

☛ When do we expand file?

• Keep track of: #used slots (incl. overflow)
 #total slots in primary buckets

= U

equiv, #(indexed key ptr pairs)__________
#total slots in primary buckets

36

106

 Linear Hashing

 Can handle growing files
 - with less wasted space
 - with no full reorganizations

 No indirection like extensible hashing

Summary

+

+

 Can still have overflow chains -

107

Example: BAD CASE

 Very full

 Very empty Need to move
 m here…
 Would waste
 space...

108

 Hashing
 - How it works
 - Dynamic hashing
 - Extensible
 - Linear

Summary

37

109

Next:

•  Indexing vs Hashing
•  Index definition in SQL
•  Multiple key access

110

•  Hashing good for probes given key
 e.g., SELECT …
 FROM R
 WHERE R.A = 5

Indexing vs Hashing

111

•  INDEXING (Including B Trees) good for
 Range Searches:
 e.g., SELECT

 FROM R
 WHERE R.A > 5

Indexing vs Hashing

38

112

Index definition in SQL

•  Create index name on rel (attr)
•  Create unique index name on rel (attr)

defines candidate
key

• Drop INDEX
name

113

 CANNOT SPECIFY TYPE OF INDEX
 (e.g. B-tree, Hashing, …)
 OR PARAMETERS
 (e.g. Load Factor, Size of Hash,...)

 ... at least in SQL...

Note

114

 ATTRIBUTE LIST ⇒ MULTIKEY INDEX
 (next)
 e.g., CREATE INDEX foo ON R(A,B,C)

Note

39

115

Motivation: Find records where
 DEPT = “Toy” AND SAL > 50k

Multi-key Index

116

Strategy I:

•  Use one index, say Dept.
•  Get all Dept = “Toy” records

 and check their salary

I1

117

•  Use 2 Indexes; Manipulate Pointers

Toy Sal
 > 50k

Strategy II:

40

118

•  Multiple Key Index

One idea:

Strategy III:

I1

I2

I3

119

Example

 Example
 Record

Dept
Index

 Salary
 Index

Name=Joe
DEPT=Sales

SAL=15k

Art
Sales
Toy

10k
15k
17k
21k

12k
15k
15k
19k

120

For which queries is this index good?

Find RECs Dept = “Sales” SAL=20k
Find RECs Dept = “Sales” SAL > 20k
Find RECs Dept = “Sales”
Find RECs SAL = 20k

41

121

Interesting application:

•  Geographic Data

 DATA:

 <X1,Y1, Attributes>
 <X2,Y2, Attributes>

x

y

.
.

.

122

Queries:

•  What city is at <Xi,Yi>?
•  What is within 5 miles from <Xi,Yi>?
•  Which is closest point to <Xi,Yi>?

123

h
n

b

i a

c o

d

10 20

10 20

Example

e

g

f

m

l

k
j 25 15 35 20

40

30

20

10

h i a b c d e f g

n o m l j k

•  Search points near f
•  Search points near b

5

15 15

42

124

Queries

•  Find points with Yi > 20
•  Find points with Xi < 5
•  Find points “close” to i = <12,38>
•  Find points “close” to b = <7,24>

125

•  Many types of geographic index
 structures have been suggested
• Quad Trees
• R Trees

126

Outline/summary

•  Conventional Indexes
• Sparse vs. dense
• Primary vs. secondary

•  B+ trees
•  Hashing schemes
•  Bitmap indices --> Next

43

Revisit: Processing queries without
accessing records until last step
Find employees of the Toys dept with 4 years in the company

SELECT Name FROM Employee
WHERE Dept=“Toys” AND Year=4

Toys
PCs
Pens
Suits

Dept Index
Aaron Suits 4
Helen Pens 3
Jack PCs 4
Jim Toys 4
Joe Toys 3
Nick PCs 2
Walt Toys 5
Yannis Pens 1

1
2
3
4

Year Index

Bitmap indices: Alternate
structure, heavily used in OLAP

128

Toys 00011010
PCs 00100100
Pens 01000001
Suits 10000000

Dept Index
Aaron Suits 4
Helen Pens 3
Jack PCs 4
Jim Toys 4
Joe Toys 3
Nick PCs 2
Walt Toys 1
Yannis Pens 1

00000011 1
00000100 2
01001000 3
10110000 4

Assume the tuples of the Employees table are ordered.

+ Find even more quickly intersections and unions
(e.g., Dept=“Toys” AND Year=4)
? Seems it needs too much space -> We’ll do compression
? How do we deal with insertions and deletions -> Easier than you think

Year Index
Conceptually only!

Compression, with Run-Length
Encoding

•  Naive solution needs mn bits, where m is #distinct
values and n is #tuples

•  But there is just n 1’s=> let’s utilize this
•  Encode sequence of runs (e.g. [3,0,1])

129

Toys: 00011010

3 0 1
First run says:

The first ace appears
after 3 zeros

Second run says:
The 2nd ace appears

immediately after the 1st

Third run says:
The 3rd ace appears

after 1 zero after the 2nd

44

Byte-Aligned Run Length
Encoding

130

Next key intuition: Spend fewer bits for smaller
numbers

Consider the run
5, 200, 17
In binary it is
101, 11000100, 10001

A binary number of up to 7 bits => 1 byte
A binary number of up to 14 bits => 2 bytes
…
Use the first bit of each byte to denote if it is the
last one of a number
00000101, 10000001, 01000100, 00010001

Bit-aligned 2nlogm
Compression (simple version)

Toys: 00011010

3 0 1
First run says:

The first ace appears
after 3 zeros

Second run says:
The 2nd ace appears

immediately after the 1st

Third run says:
The 3rd ace appears

after 1 zero after the 2nd

1011 00 0 1
10 says: The binary encoding of the first number

needs 1+1 digits.
11 says: The first number is 3

2nlog m compression

•  Example
•  Pens: 01000001
•  Sequence [1,5]
•  Encoding: 01110101

132

45

Insertions and deletions &
miscellaneous engineering

•  Assume tuples are inserted in order
•  Deletions: Do nothing
•  Insertions: If tuple t with value v is

inserted, add one more run in v’s
sequence (compact bitmap)

133

Summing Up…

We discussed how the database stores
data + basic algorithms

•  Sorting
•  Indexing
How are they used in query processing?

134

Query Processing Notes

What happens when a query is
processed and how to find out

46

Query Processing

•  The query processor turns user queries and
data modification commands into a query
plan - a sequence of operations (or algorithm)
on the database
–  from high level queries to low level commands

•  Decisions taken by the query processor
–  Which of the algebraically equivalent forms of a

query will lead to the most efficient algorithm?
–  For each algebraic operator what algorithm should

we use to run the operator?
–  How should the operators pass data from one to

the other? (eg, main memory buffers, disk buffers)

The differences between good plans
and plans can be huge
Example

 Select B,D
 From R,S
 Where R.A = “c” ∧ S.E = 2 ∧ R.C=S.C

 R A B C S C D E

 a 1 10 10 x 2

 b 1 20 20 y 2

 c 2 10 30 z 2

 d 2 35 40 x 1

 e 3 45 50 y 3

Answer B D
 2 x

47

•  How do we execute query eventually?

 - Scan relations
 - Do Cartesian product

 (literally produce all
 combinations of

FROM clause tuples)

 - Select tuples (WHERE)
 - Do projection (SELECT)

One idea

RxS R.A R.B R.C S.C S.D S.E

 a 1 10 10 x 2

 a 1 10 20 y 2
 .
 .

 C 2 10 10 x 2
 .
 .

Bingo!

Got one...

Relational Plan:

Ex: Plan I
 ΠB,D

 σR.A=“c”∧ S.E=2 ∧ R.C=S.C	

	
	 	 	 	 X
 R S

1.  Scan R
2.  For each tuple r of R scan S
3.  For each (r,s), where s in S

 select and project on the fly

SCAN SCAN

FLY

FLY

OR:ΠB,D [σR.A=“c”∧ S.E=2 ∧ R.C = S.C (R X S)]	FLY FLY SCAN SCAN

48

Ex: Plan I
 ΠB,D

 σR.A=“c”∧ S.E=2 ∧ R.C=S.C	

	
	 	 	 	 X
 R S

“FLY” and “SCAN” are the defaults

Another idea:

 ΠB,D

 σR.A = “c” σS.E = 2

 R S

Plan II

 natural join

Scan R and S, perform on the fly selections,
do join using a hash structure, project

HASH

 R S

A B C σ (R) σ(S) C D E

a 1 10 A B C C D E 10 x 2

b 1 20 c 2 10 10 x 2 20 y 2

c 2 10 20 y 2 30 z 2

d 2 35 30 z 2 40 x 1

e 3 45 50 y 3

 	

49

Plan III
 Use R.A and S.C Indexes

 (1) Use R.A index to select R tuples
 with R.A = “c”

 (2) For each R.C value found, use S.C
 index to find matching join tuples

 (3) Eliminate join tuples S.E ≠ 2
 (4) Project B,D attributes

 R S

A B C C D E

a 1 10 10 x 2

b 1 20 20 y 2

c 2 10 30 z 2

d 2 35 40 x 1

e 3 45 50 y 3

 	

A C
I1 I2

=“c”

<c,2,10> <10,x,2>

check=2?

output: <2,x>

next tuple:
<c,7,15>

π	

R
S

R.B, S.D
σ	S.E=2

σ	R.a=“c”
INDEX

RI

Right Index Join

Algebraic Form of Plan

50

From Query To Optimal Plan

•  Complex process
•  Algebra-based logical and physical plans
•  Transformations
•  Evaluation of multiple alternatives

Issues in Query Processing and
Optimization

•  Generate Plans
–  employ efficient execution primitives for computing relational

algebra operations
–  systematically transform expressions to achieve more

efficient combinations of operators
•  Estimate Cost of Generated Plans

–  Statistics, which are reported

parse

convert

Generate/Transform lqp’s

estimate result sizes

generate physical plans

estimate costs

pick best

execute

{P1,P2,…..}

{(P1,C1),(P2,C2)...}

Chosen Plan

 answer

SQL query

parse tree

logical query plan (algebra)

“improved” l.q.p(s)

l.q.p. +sizes

statistics

Scope of responsibility
of each module may

is fuzzy

Generate/Transform pqp’s

51

Algebraic Operators: A Bag
version

•  Union of R and S: a tuple t is in the result as many times as
the sum of the number of times it is in R plus the times it is
in S

•  Intersection of R and S: a tuple t is in the result the
minimum of the number of times it is in R and S

•  Difference of R and S: a tuple t is in the result the number
of times it is in R minus the number of times it is in S

•  δ(R) converts the bag R into a set
–  SQL’s R UNION S is really δ(R∪ S)

•  Example: Let R={A,B,B} and S={C,A,B,C}.Describe the
union, intersection and difference...

Extended Projection
•  project πΑ , A is attribute list

–  The attribute list may include x→y in the list A to indicate
that the attribute x is renamed to y

–  Arithmetic, string operators and scalar functions on
attributes are allowed. For example,

•  a+b→x means that the sum of a and b is renamed into x.
•  c||d→y concatenates the result of c and d into a new attribute

named y

•  The result is computed by considering each tuple
in turn and constructing a new tuple by picking the
attributes names in A and applying renamings and
arithmetic and string operators

•  Example:

Products and Joins
•  Product of R and S (R×S):

–  If an attribute named a is found in both schemas then
rename one column into R.a and the other into S.a

–  If a tuple r is found n times in R and a tuple s is found m
times in S then the product contains nm instances of the
tuple rs

•  Joins
–  Natural Join R S = πΑ σC(R×S) where

•  C is a condition that equates all common attributes
•  A is the concatenated list of attributes of R and S with no

duplicates
•  you may view tha above as a rewriting rule

–  Theta Join
•  arbitrary condition involving multiple attributes

52

Grouping and Aggregation
•  γGroupByList; aggrFn1 → attr1 ,

…,aggrFnN → attrN

•  Conceptually, grouping
leads to nested tables
and is immediately
followed by functions that
aggregate the nested
table

•  Example: γDept; AVG(Salary) →
AvgSal ,…, SUM(Salary) → SalaryExp

Name Dept Salary
Joe Toys 45
Nick PCs 50
Jim Toys 35
Jack PCs 40

Employee

Find the average salary for each department
SELECT Dept, AVG(Salary) AS AvgSal,
 SUM(Salary) AS SalaryExp
FROM Employee
GROUP-BY Dept

Dept AvgSal SalaryExp
Toys 40 80
PCs 45 90

Dept Nested Table
Name Salary

Toys Joe 45
Jim 35

PCs Nick 50
Jack 40

Sorting and Lists
•  SQL and algebra results are ordered
•  Could be non-deterministic or dictated by

SQL ORDER BY, algebra τ
•  τOrderByList
•  A result of an algebraic expression o(exp)

is ordered if
–  If o is a τ
–  If o retains ordering of exp and exp is ordered

•  Unfortunately this depends on implementation of o
–  If o creates ordering
– Consider that leaf of tree may be SCAN(R)

Relational algebra optimization

•  Transformation rules
 (preserve equivalence)

•  A quick tour

53

Algebraic Rewritings:
Commutativity and Associativity

R

S T

×

× T

R S

×

×
R S

×

Commutativity Associativity

R

S T

T

R S
R S S R

S R

× Cartesian
Product

Natural
Join

Question 1: Do the above hold for both sets and bags?
Question 2: Do commutativity and associativity hold
for arbitrary Theta Joins?

Algebraic Rewritings:
Commutativity and Associativity (2)

R

S T

∪

∪ T

R S

∪

∪
R S

∪

Commutativity Associativity

R

S T

T

R S
R S S R

S R

∪

∩ ∩ ∩

∩ ∩

∩

Union

Intersection

Question 1: Do the above hold for both sets and bags?
Question 2: Is difference commutative and associative?

Algebraic Rewritings for Selection:
Decomposition of Logical Connectives

σ	cond2

σ	cond1

R σ	cond1 AND cond2
R

σ	cond1 OR cond2
R

∪

σ	cond2

R

σ	cond1

σ	cond1

σ	cond2

R

Does it apply
to bags?

54

Algebraic Rewritings for Selection:
Decomposition of Negation

σ	cond1 AND NOT cond2
R

Question

σ	NOT cond2
R

σ	cond1 OR NOT cond2
R

Complete

Pushing the Selection Thru Binary
Operators: Union and Difference

σ	

R S

cond
∪ σ	cond

S

σ	cond
R

∪

σ	

R S

cond
-

σ	cond
S

σ	cond
R

-

S

σ	cond
R

-

Union

Difference

Exercise: Do the rule for intersection

Pushing Selection thru
Cartesian Product and Join

σ	

R S

cond
× σ	cond

S
R

×
The right direction

requires that cond refers to S
attributes only

σ	

R S

cond
σ	cond
S

R

The right direction
requires that cond refers to S

attributes only

The right direction
requires that all the attributes used

by cond appear in both R and S

σ	cond
S

R

σ	cond

Exercise: Do the rule for theta join

55

Rules: π,σ combined

Let x = subset of R attributes
 z = attributes in predicate P

 (subset of R attributes)

πx[σp (R)] =

 {σp [πx (R)]}

 πx

 πxz

Pushing Simple Projections
Thru Binary Operators

A projection is simple if it only consists of an attribute list

π	

R S

A
∪ π	A

S

π	A
R

∪
Union

Question 1: Does the above hold for both bags and sets?
Question 2: Can projection be pushed below

 intersection and difference?
 Answer for both bags and sets.

Pushing Simple Projections Thru Binary
Operators: Join and Cartesian Product

π	

R S

A
×

π	C
S

π	B
R

×

π	A Where B is the list
of R attributes that
appear in A.
Similar for C.

π	

R S

A

π	C
S

π	B
R

π	A

Exercise: Write the rewriting rule that pushes projection
below theta join.

Question: What is B
and C ?

56

Projection Decomposition

π	XY

π	X

R
X

R

π	

More Rules can be Derived:

σp∧q (R S) =

σp∧q∧m (R S) =

σpvq (R S) =

Derived Rules: σ + combined

p only at R, q only at S, m at both R and S

--> Derivation for first one:

σp∧q (R S) =

σp [σq (R S)] =

σp [R σq (S)] =

[σp (R)] [σq (S)]

57

σp1∧p2 (R) → σp1 [σp2 (R)]

σp (R S) → [σp (R)] S
R S → S R

πx [σp (R)] → πx {σp [πxz (R)]}

Which are always “good”
transformations?

In textbook: more transformations

•  Eliminate common sub-expressions
•  Other operations: duplicate elimination

Bottom line:

•  No transformation is always good at the
l.q.p level

•  Usually good
– early selections
– elimination of cartesian products
– elimination of redundant subexpressions

•  Many transformations lead to “promising”
plans
– Commuting/rearranging joins
–  In practice too “combinatorially explosive” to

be handled as rewriting of l.q.p.

58

Algorithms for Relational
Algebra Operators

•  Three primary techniques
– Sorting
– Hashing
–  Indexing

•  Three degrees of difficulty
– data small enough to fit in memory
–  too large to fit in main memory but small

enough to be handled by a “two-pass”
algorithm

– so large that “two-pass” methods have to be
generalized to “multi-pass” methods (quite
unlikely nowadays)

The dominant cost of operators running
on disk:

•  Count # of disk blocks that must be read
(or written) to execute query plan

Clustering index

Index that allows tuples to be read in an
order that corresponds to a sort order
 A

A

index

10
15
17

19
35
37

59

Clustering can radically change cost

•  Clustered relation
 …..

•  Clustering index

R1 R2 R3 R4 R5 R5 R7 R8

Pipelining can radically change
cost

•  Interleaving of operations
across multiple operators

•  Smaller memory footprint,
fewer object allocations

•  Operators support:
–  open()
–  getNext()
–  close()

•  Simple for unary
•  Pipelined operation for binary

discussed along with
physical operators

π

parent

child

open()
getNext()
close()

class project
 open()
 { return child.open() }

 getNext()
 { return child.getNext() }

Example R1 R2 over common attribute C

First we will see main memory-based
implementations

60

•  Iteration join (conceptually – without
taking into account disk block issues)

•  For each tuple of left argument, re-scan
the right argument

 for each r ∈ R1 do
 for each s ∈ R2 do
 if r.C = s.C then output r,s pair

Also called “nested loop join” in some databases
(eg Postgres)

•  Join with index (Conceptually)
– alike iteration join but right relation

accessed with index
For each r ∈ R1 do

 [X ← index (R2, C, r.C)
 for each s ∈ X do
 output r,s pair]

Assume R2.C index

Note: X ← index(rel, attr, value)
 then X = set of rel tuples with attr = value

•  Merge join (conceptually)
(1) if R1 and R2 not sorted, sort them
(2) i ← 1; j ← 1;
 While (i ≤ T(R1)) ∧ (j ≤ T(R2)) do
 if R1{ i }.C = R2{ j }.C then outputTuples
 else if R1{ i }.C > R2{ j }.C then j ← j+1
 else if R1{ i }.C < R2{ j }.C then i ← i+1

61

Procedure Output-Tuples
 While (R1{ i }.C = R2{ j }.C) ∧ (i ≤ T(R1)) do
 [jj ← j;

 while (R1{ i }.C = R2{ jj }.C) ∧ (jj ≤ T(R2)) do
 [output pair R1{ i }, R2{ jj };
 jj ← jj+1]

 i ← i+1]

Example

i R1{i}.C R2{j}.C j
1 10 5 1
2 20 20 2
3 20 20 3
4 30 30 4
5 40 30 5

 50 6
 52 7

•  Hash join, hashing both sides (conceptual)

– Hash function h, range 0 → k
– Buckets for R1: G0, G1, ... Gk
– Buckets for R2: H0, H1, ... Hk
Algorithm
(1) Hash R1 tuples into G buckets
(2) Hash R2 tuples into H buckets
(3) For i = 0 to k do

 match tuples in Gi, Hi buckets

62

Simple example hash: even/odd

R1 R2 Buckets
2 5 Even
4 4 R1 R2
3 12 Odd:
5 3
8 13
9 8

 11
 14

2 4 8 4 12 8 14

3 5 9 5 3 13 11

Variation: Hash one side only

What’s the benefit in hashing both sides?
Wait till we discuss hash joins on secondary storage…

Algorithm
(1) Hash R1 tuples into G buckets
(2) For each tuple r2 or R2

 find i=hash(r2)
 match r2 with tuples in Gi

Disk-oriented Cost Model
•  There are M main memory buffers.

– Each buffer has the size of a disk block
•  The input relation is read one block at a time.
•  The cost is the number of blocks read.
•  (Applicable to Hard Disks:) If B consecutive

blocks are read the cost is B/d.
•  The output buffers are not part of the M buffers

mentioned above.
– Pipelining allows the output buffers of an operator

to be the input of the next one.
– We do not count the cost of writing the output.

63

Notation

•  B(R) = number of blocks that R occupies
•  T(R) = number of tuples of R
•  V(R,[a1, a2 ,…, an]) = number of distinct

tuples in the projection of R on a1, a2 ,…,
an

One-Pass Main Memory
Algorithms for Unary Operators

•  Assumption: Enough memory to keep the relation
•  Projection and selection:

–  Scan the input relation R and apply operator one tuple at a
time

–  Incremental cost of “on the fly” operators is 0

•  Duplicate elimination and aggregation
–  create one entry for each group and compute the

aggregated value of the group
–  it becomes hard to assume that CPU cost is negligible

•  main memory data structures are needed

for each block Br of R do
 store tuples of Br in main memory
for each each block Bs of S do
 for each tuple s of Bs
 join tuples of s with matching tuples of R

One-Pass Nested Loop Join
•  Assume B(R) is less than M
•  Tuples of R should be stored in an

efficient lookup structure
•  Exercise: Find the cost of the

algorithm below

64

A variation where the inner side is organized into a
hash (hash join in some databases)

for each block Br of R do
 store tuples of Br in main memory

 hash buckets G1,…, Gn
for each each block Bs of S do
 for each tuple s of Bs

 find h=hash(s)
 join s with matching tuples in Gh

Generalization of Nested-Loops

for each chunk of M-1 blocks Br of R do
 store tuples of Br in main memory
 for each each block Bs of S do
 for each tuple s of Bs
 join tuples of s with matching tuples of R

Exercise: Compute cost

Simple Sort-Merge Join
•  Assume natural join on C
•  Sort R on C using the two-

phase multiway merge sort
–  if not already sorted

•  Sort S on C
•  Merge (opposite side)

–  assume two pointers Pr,Ps to
tuples on disk, initially pointing at
 the start

–  sets R’, S’ in memory

•  Remarks:
–  Very low average memory

requirement during merging (but
no guarantee on how much is
needed)

–  Cost:

while Pr!=EOF and Ps!=EOF
 if *Pr[C] == *Ps[C]
 do_cart_prod(Pr,Ps)
 else if *Pr[C] > *Ps[C]
 Ps++
 else if *Ps[C] > *Pr[C]
 Pr++

function do_cart_prod(Pr,Ps)
 val=*Pr[C]
 while *Pr[C]==val
 store tuple *Pr in set R’
 while *Ps[C]==val
 store tuple *Ps in set S’;
 output cartesian product

 of R’ and S’

65

Efficient Sort-Merge Join

•  Idea: Save two disk I/O’s per block by combining
the second pass of sorting with the ``merge”.

•  Step 1: Create sorted sublists of size M for R and S
•  Step 2: Bring the first block of each sublist to a

buffer
–  assume no more than M sublists in all

•  Step 3:Repeatedly find the least C value c among
the first tuples of each sublist. Identify all tuples with
join value c and join them.
–  When a buffer has no more tuple that has not already

been considered load another block into this buffer.

Efficient Sort-Merge Join
Example

C RA
1 r1
2 r2
3 r3

…
20 r20

R

C SA
1 s1

...
5 s5

16 s16
…

20 s20

S

Assume that after first phase of
multiway sort we get 4 sublists,

2 for R and 2 for S.
Also assume that each block contains

two tuples.

3 7 8 10 11 13 14 16 17 18
1 2 4 5 6 9 12 15 19 20

R

 1 3 5 17
2 4 16 18 19 20

S

Sort and Merge Join are
typically separate operators

•  Modularity
– The sorting needed by join is no different than

the sorting needed by ORDER BY
•  May be only one side or no side needs

sorting

66

Two-Pass Hash-Based
Algorithms

•  General Idea: Hash the tuples of the input arguments in
such a way that all tuples that must be considered together
will have hashed to the same hash value.
–  If there are M buffers pick M-1 as the number of hash buckets

•  Example: Duplicate Elimination
–  Phase 1: Hash each tuple of each input block into one of the

 M-1 bucket/buffers. When a buffer fills save to disk.
–  Phase 2: For each bucket:

•  load the bucket in main memory,
•  treat the bucket as a small relation and eliminate duplicates
•  save the bucket back to disk.

–  Catch: Each bucket has to be less than M.
–  Cost:

Hash-Join Algorithms

•  Assuming natural join, use a hash function that
–  is the same for both input arguments R and S
–  uses only the join attributes

•  Phase 1: Hash each tuple of R into one of the M-1
buckets Ri and similar each tuple of S into one of
Si

•  Phase 2: For i=1…M-1
–  load Ri and Si in memory

–  join them and save result to disk
•  Question: What is the maximum size of buckets?
•  Question: Does hashing maintain sorting?

Index-Based Join: The Simplest
Version

for each Br in R do
 for each tuple r of Br with B value b

 use index of S to find
 tuples {s1 ,s2 ,...,sn} of S with
B=b

 output {rs1 ,rs2 ,...,rsn}

Assume that we do natural join of R(A,B) and S(B,C)
and there’s an index on S

Cost: Assuming R is clustered and non-sorted and the
index on S is clustered on B then
B(R)+T(R)B(S)/V(S,B) + some more for reading index
Question: What is the cost if R is sorted?

67

Reading the plan that was chosen
by the database (EXPLAIN)

EXPLAIN SELECT s.pid, s.first_name, s.last_name, e.credits
FROM students s, enrollment e
WHERE s.id = e.student
 AND e.class = 1;

Notes on physical operators of
Postgres and other databases

201

σc R turns into single operator

•  Sequential Scan with filter c
		Seq	Scan	on	R	
				Filter:	(c)
•  Index Scan
		Index	Scan	using	<index>	on	R			
				Index	Cond:	(c)	

68

202

Steps of joins, aggregations broken
into fine granularity operators

•  No sort-merge: Separate sort and merge
•  Hash join has separate operation creating hash

table and separate operation doing the looping

203

Sorting

•  Sorting may be accomplished using index
–  Rarely wins 2-phase sort if table is not clustered and is

much bigger than memory

•  Estimating cost of query plan

(1) Estimating size of results
(2) Estimating run time (often reduces to

#IOs)
Both estimates can go very wrong! How does the

database estimate
size of such

intermediate results?

How does the
database estimate

query run time?

69

Estimating result size

•  Keep statistics for relation R
– T(R) : # tuples in R
– S(R) : # of bytes in each R tuple
– B(R): # of blocks to hold all R tuples
– V(R, A) : # distinct values in R
 for attribute A

Example
 R A: 20 byte string

 B: 4 byte integer
 C: 8 byte date
 D: 5 byte string

A B C D
cat 1 10 a
cat 1 20 b
dog 1 30 a
dog 1 40 c
bat 1 50 d

T(R) = 5 S(R) = 37
V(R,A) = 3 V(R,C) = 5
V(R,B) = 1 V(R,D) = 4

Size estimates for W = R1 x R2

T(W) =

S(W) =

T(R1) × T(R2)

S(R1) + S(R2)

70

S(W) = S(R)

T(W) = ?

Size estimate for W = σZ=val (R)

Example
 R V(R,A)=3

 V(R,B)=1
 V(R,C)=5
 V(R,D)=4

W = σz=val(R) T(W) =

A B C D
cat 1 10 a
cat 1 20 b
dog 1 30 a
dog 1 40 c
bat 1 50 d

T(R)
V(R,Z)

What about W = σz ≥ val (R) ?

 T(W) = ?

•  Solution # 1:
 T(W) = T(R)/2

•  Solution # 2:
 T(W) = T(R)/3

71

•  Solution # 3: Estimate values in range

Example R Z

Min=1 V(R,Z)=10

 W= σz ≥ 15 (R)

Max=20

f = 20-15+1 = 6 (fraction of range)
 20-1+1 20

T(W) = f × T(R)

Equivalently:
 f×V(R,Z) = fraction of distinct values
T(W) = [f × V(Z,R)] ×T(R) = f × T(R)

 V(Z,R)

Size estimate for W = R1 R2

Let x = attributes of R1
 y = attributes of R2

 X ∩ Y = ∅

 Same as R1 x R2

Case 1

72

 W = R1 R2 X ∩ Y = A
R1 A B C R2 A D

Case 2

Assumption:
ΠA R1 ⊆ ΠA R2 ⇒ Every A value in R1 is in R2

 (typically A of R1 is foreign key
 of the primary key of A of R2)
ΠA R2 ⊆ ΠA R1 ⇒ Every A value in R2 is in R1
“containment of value sets” (justified by primary

 key – foreign key relationship)

R1 A B C R2 A D

Computing T(W) when A of R1 is the

 foreign key ΠA R1 ⊆ ΠA R2

1 tuple of R1 matches with exactly 1 tuple
of R2

so T(W) = T(R1)

R1 A B C R2 A D

Another way to approach when

 ΠA R1 ⊆ ΠA R2

Take
1 tuple Match

1 tuple matches with T(R2) tuples...
 V(R2,A)

so T(W) = T(R2) × T(R1)

 V(R2, A)

73

•  V(R1,A) ≤ V(R2,A) T(W) = T(R2) T(R1)

 V(R2,A)

•  V(R2,A) ≤ V(R1,A) T(W) = T(R2) T(R1)

 V(R1,A)

[A is common attribute]

T(W) = T(R2) T(R1)
 max{ V(R1,A), V(R2,A) }

In general W = R1 R2

Combining estimates on subexpressions:
Value preservation

σ	

R S

C=1
S

R

σ	C=1

R(A, C)
T(R) = 103

V(A, R) = 103

V(C, R) = 102

S(A, B)
T(S) = 102

V(A, S) = 50

T(R S) =
 T(R) x T(S) / max(V(A,R), V(A, S)) = 102

V(C, R S) = 102 (Big) assumption:
Value preservation of C

Result =

T(Result) = T(R S) / V(C, R S) = 1

Result =

74

Value preservation may have to be pushed to a
weird assumption (but there’s logic behind it!)

σ	

R S

C=1
S

R

σ	C=1

R(A, C)
T(R) = 103

V(A, R) = 103

V(C, R) = 102

S(A, B)
T(S) = 102

V(A, S) = 50

T(R S) = 102

V(C, R S) = 102

Result =

T(Result) = 1

Result =

T(σc=1R) = T(R) / V(C, R) = 10
V(A, σc=1R) = 103
T(Result) =
 T(σc=1R) x T(S) / max(V(A , σc=1R), V(A, S)) = 1

We had to extend value preservation to the
weird assumption that attribute A has
more values than the number of tuples in R.
In this way the number of S tuples matching
an R tuple stays steady

Ideally, the size
estimation should
not depend on which
of the two equivalent
formulas for Result
one uses. However,
to achieve this we may
need to push the value
preservation assumption
to artificial intermediate
estimates…

Value preservation of join attribute

Students(SID, …)
CSEenroll(EID, SID, …) Honors (HID, SID, …)

Foreign-to-primary

T(Students) = 20,000
V(SID, Students) = 20,000 T(CSEenroll) = 10,000

V(SID, CSEenroll) = 1,000

T(Honors) = 5,000
V(SID, Honors) = 500

T(CSEenroll(EID, SID, …) Students(SID, …) Honors (HID, SID, …)) = ?

CSEenroll Students

T(.) = 10,000
V(SID, .) ?= 1,000 (preservation of SIDs in CSEenroll)
 or 20,000 (preservation of SIDs in Students) ?

Honors

T(.) = 10,000 x 5,000 / max(500, 20,000) = 2,500 CORRECT
 10,000 x 5,000 / max(500, 1,000) = 50,000 WRONG

If in doubt, think in terms of probabilities and
matching records

Students(SID, …)
CSEenroll(EID, SID, …) Honors (HID, SID, …)

Foreign-to-primary

T(Students) = 20,000
V(SID, Students) = 20,000 T(Students) = 10,000

V(SID, Students) = 1,000

T(Students) = 5,000
V(SID, Students) = 500

T(CSEenroll(EID, SID, …) Students(SID, …) Honors (HID, SID, …)) = ?

•  A SID of Student appears in CSEEnroll with probability 1000/20000
•  i.e., 5% of students are enrolled in CSE

•  A SID of Student appears in Honors with probability 500/20000
•  i.e., 2.5% of students are honors students

=> An SID of Student appears in the join result with probability 5% x 2.5%
•  On the average, each SID of CSEEnroll appears in 10,000/1,000 tuples

•  i.e., each CSE-enrolled student has 10 enrollments
•  On the average, each SID of Honors appears in 5,000/500 tuples

•  i.e., each honors’ student has 10 honors
⇒ Each Student SID that is in both Honors and CSEEnroll is in 10x10 result tuples
⇒  T(result) = 20,000 x 5% x 2.5% x 10 x 10 = 2,500 tuples

75

Plan Enumeration: Yet another
source of suboptimalities

Not all possible equivalent plans are
generated

•  Possible rewritings may not happen
•  Join sequences of n tables lead to #plans

that is exponential in n
– Eg, Postgres comes with a default exhaustive

search for up to 12 joins
Morale: The plan you have in mind have not

been considered

Arranging the Join Order: the Wong-
Youssefi algorithm (INGRES)

Sample TPC-H Schema
Nation(NationKey, NName)
Customer(CustKey, CName, NationKey)
Order(OrderKey, CustKey, Status)
Lineitem(OrderKey, PartKey, Quantity)
Product(SuppKey, PartKey, PName)
Supplier(SuppKey, SName)

SELECT SName
FROM Nation, Customer, Order, LineItem, Product, Supplier
WHERE Nation.NationKey = Cuctomer.NationKey

 AND Customer.CustKey = Order.CustKey
 AND Order.OrderKey=LineItem.OrderKey
 AND LineItem.PartKey= Product.Partkey
 AND Product.Suppkey = Supplier.SuppKey
 AND NName = “Canada”

Find the
names of

suppliers that
sell a product
that appears
in a line item
of an order
made by a

customer who
is in Canada

Challenges with Large Natural Join
Expressions

For simplicity, assume that in the query
1.  All joins are natural
2. whenever two tables of the FROM clause have common

 attributes we join on them
1.  Consider Right-Index only

Nation Customer Order LineItem Product Supplier

σNName=“Canada”

πSName

One possible order

RI

RI

RI

RI

RI

Index

76

Multiple Possible Orders

Nation Customer Order
LineItem Product Supplier

σNName=“Canada”

πSName

RI

RI

RI

RI

RI

Wong-Yussefi algorithm
assumptions and objectives

•  Assumption 1 (weak): Indexes on all join
attributes (keys and foreign keys)

•  Assumption 2 (strong): At least one
selection creates a small relation
– A join with a small relation results in a small

relation
•  Objective: Create sequence of index-

based joins such that all intermediate
results are small

Hypergraphs

CName

CustKey

NationKey NName

 Status OrderKey

Quantity

PartKey SuppKey PName SName

•  relation hyperedges
•  two hyperedges for same relation are possible

•  each node is an attribute
•  can extend for non-natural equality joins by merging nodes

Nation
Customer

Order
LineItem

Product

Supplier

77

Small Relations/Hypergraph Reduction

CName

CustKey

NationKey NName

 Status OrderKey

Quantity

PartKey SuppKey PName SName

Nation

Customer

Order
LineItem

Product

Supplier

NationKey NName

“Nation” is small
because it has the
equality selection

NName = “Canada”

Nation

σNName=“Canada”
Index Pick a small

relation (and its
conditions) to start

the plan

CName

CustKey

NationKey NName

 Status OrderKey

Quantity

PartKey SuppKey PName SName

Nation

Customer

Order
LineItem

Product

Supplier

NationKey NName

Nation

σNName=“Canada”
Index

RI

Remove small
relation (hypergraph
reduction) and color

as “small” any
relation that joins
with the removed
“small” relation

Customer

Pick a small
relation (and its

conditions if any)
and join it with the
small relation that
has been reduced

After a bunch of steps…

Nation Customer Order LineItem Product Supplier

σNName=“Canada”

πSName

RI

RI

RI

RI

RI

Index

78

Multiple Instances of Each Relation

SELECT S.SName
FROM Nation, Customer, Order, LineItem L, Product P, Supplier S,

 LineItem LE, Product PE, Supplier Enron
WHERE Nation.NationKey = Cuctomer.NationKey

 AND Customer.CustKey = Order.CustKey
 AND Order.OrderKey=L.OrderKey
 AND L.PartKey= P.Partkey
 AND P.Suppkey = S.SuppKey
 AND Order.OrderKey=LE.OrderKey
 AND LE.PartKey= PE.Partkey
 AND PE.Suppkey = Enron.SuppKey
 AND Enron.Sname = “Enron”
 AND NName = “Cayman”

Find the
names of
suppliers

whose
products

appear in an
order made by

a customer
who is in
Cayman

Islands and an
Enron product
appears in the

same order

Multiple Instances of Each Relation

CName

CustKey

NationKey NName

 Status OrderKey

Quantity

PartKey SuppKey PName SName

Nation
Customer

Order
LineItem L

Product P

Supplier S

SuppKey PName PartKey SName

Product PE

Supplier Enron

LineItem LE

Quantity

Multiple choices are possible

CName

CustKey

NationKey NName

 Status OrderKey

Quantity

PartKey SuppKey PName SName

Nation
Customer

Order
LineItem L

Product P

Supplier S

SuppKey PName PartKey SName

Product PE

Supplier Enron

LineItem LE

Quantity

79

CName

CustKey

NationKey NName

 Status OrderKey

Quantity

PartKey SuppKey PName SName

Nation
Customer

Order
LineItem L

Product P

Supplier S

SuppKey PName PartKey SName

Product PE

Supplier Enron

LineItem LE

Quantity

CName

CustKey

NationKey NName

 Status OrderKey

Quantity

PartKey SuppKey PName SName

Nation
Customer

Order
LineItem L

Product P

Supplier S

SuppKey PName PartKey SName

Product PE

Supplier Enron

LineItem LE

Quantity

Nation Customer Order

σNName=“Cayman”

RI

RI

Index

Enron PE LE

σSName=“Enron”

RI RI

Index

LineItem Product Supplier

RI

RI

RI

80

The basic dynamic programming
approach to enumerating plans

for each sub-expression
 op(e1 e2 … en) of a logical plan

–  (recursively) compute the best plan and cost for
each subexpression ei

–  for each physical operator opp implementing op
• evaluate the cost of computing op using opp

and the best plan for each subexpression ei

•  (for faster search) memo the best opp

Local suboptimality of basic approach and
the Selinger improvement

•  Basic dynamic programming may lead to (globally)
suboptimal solutions

•  Reason: A suboptimal plan for e1 may lead to the optimal
plan for op(e1 e2 … en)
–  Eg, consider e1 A e2 and
–  assume that the optimal computation of e1 produces unsorted

result
–  Optimal is via sort-merge join on A
–  It could have paid off to consider the suboptimal computation of

e1 that produces result sorted on A

•  Selinger improvement: memo also any plan (that
computes a subexpression) and produces an order that
may be of use to ancestor operators

Using dynamic programming to
optimize a join expression

•  Goal: Decide the join order and join
methods

•  Initiate with n-ary join C (e1 e2 … en),
where c involves only join conditions

•  Bottom up: consider 2-way non-trivial
joins, then 3-way non-trivial joins etc
–  “non trivial” -> no cartesian product

81

Summary
We learned
•  how a database processes a query
•  how to read the plan the database chose

–  Including size and cost estimates

Back to action:
•  Choosing Indices, with our knowledge of

cost with and without indices
•  What if the database cannot find the best

plan?

