Understanding the Execution of Analytics Queries \& Applications

MAS DSE 201

SQL as declarative programming

\qquad

- SQL is a declarative programming language: \qquad
- The developer's / analyst's query only describes what result she wants from the database
- The developer does not describe the algorithm that the \qquad database will use in order to compute the result
- The database's optimizer automatically decides what is the most performant algorithm that computes the result of your SQL query
- "Declarative" and "automatic" have been the reason for the success and ubiquitous presence of database systems behind applications
- Imagine trying to come up yourself with the algorithms that efficiently execute complex queries. (Not easy.)
\qquad
\qquad
\qquad
\qquad

What do you have to do to increase the

performance of your db-backed app? \qquad

- Does declarative programming mean the developer does not have to think about performance?
\qquad
- After all, the database will automatically select the most performant algorithms for the developer's SQL queries \qquad
- No, challenging cases force the A+ SQL developer / analyst to think and make choices, \qquad because...
- Developer decides which indices to build
- Database may miss the best plan: Developer has
\qquad to understand what plan was chosen and work around \qquad
\qquad

Diagnostics

- You need to understand a few things about the performance of your query:

1. Will it benefit from indices? If yes, which are the useful indices?
2. Has the database chosen a hugely suboptimal plan? \qquad
3. How can I hack it towards the efficient way?
\qquad
\qquad
\qquad
\qquad
\square
\qquad
\qquad

Boosting performance with indices

\qquad (a short conceptual summary)
\qquad
\qquad
\qquad

How/when does an index help? Running
selection queries without an index \qquad
Consider a table R with n tuples and the selection query

SELECT *

FROM R
WHERE R.A = ?

In the absence of an index the Big-O cost of evaluating
an instance of this query
is $O(n)$ because the database will need to access the n tuples and check the condition

R.A $=\langle$ provided value \rangle

How/when does an index help?

Running selection queries with an index
Consider a table R with n tuples, an index on R.A
and assume that R.A has m distinct values.
We issue the same query and assume the database uses the index.
SELECT *
FROM R
WHERE R.A $=?$

The mechanics of indices: How to create an index

```
How to create an index on R.A ?
    After you have created table R}\mathbf{R}\mathrm{ , issue command
    CREATE INDEX myIndexOnRA ON R(A)
```

How to remove the index you previously created ?
DROP INDEX myIndexOnRA
Exercise: Create and then drop an index on
Students.first_name of the enrollment example
After you have created table students, issue command
CREATE INDEX students_first_name ON students(first_name)
DROP INDEX students_first_name
Primary keys get an index automatically

The mechanics of indices:

How to use an index in a query

- You do not have to change your SQL queries in order to direct the database to use (or not use) the indices you created.
- All you need to do is to create the index! That's easy...
\qquad
- The database will decide automatically whether to use (or not use) a created index to answer \qquad your query.
- It is possible that you create an index x but the database may not use it if it judges that there is \qquad a better plan (algorithm) for answering your query, without using the index x. \qquad
\qquad

Indexing will help any query step

 when the problem is...

Condition may also be

- Attr>value
- Attr>=value

Indexing

- Data Stuctures used for quickly locating tuples that meet a specific type of condition
- Equality condition: find Movie tuples where Director= X
- Other conditions possible, eg, range conditions: find Employee tuples where Salary>40 AND Salary<50
- Many types of indexes. Evaluate them on
- Access time
- Insertion time
- Deletion time
- Space needed (esp. as it effects access time and or ability to fit in memory)

Should I build an index? In the presence of updates, the benefit of an index has to take \qquad maintenance cost into account

	22	
	42	
	5	
	2	

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

To Index or Not to Index

- Which queries can use indices and how?
- What will they do without an index?
- Some surprisingly efficient algorithms that do not use indices \qquad
\qquad
\qquad

Understanding Storage and
Memory

Non-Volatile Storage is important to OLTP even when RAM is large

- Persistence important for transaction atomicity and durability
- Even if database fits in main memory changes have to be written in nonvolatile storage
- Hard disk
- RAM disks w/ battery
- Flash memory

Peculiarities of storage mediums affect algorithm choice

- Block-based access:
- Access performance: How many blocks were accessed
- How many-bjects
- Flash is different on reading Vs writing
- Clustering for sequential access:
- Accessing consecutive blocks costs less on disk-based systems
- We will only consider the effects of block access
\qquad
\qquad
\qquad
\qquad
\qquad

Moore's Law: Different Rates of

 Improvement Lead to Algorithm \& System Reconsiderations- Processor speed
- Main memory bit/\$
- Disk bit/\$
- RAM access speed
- Disk access speed
- Disk transfer rate

Moore's Law: Same Phenomenon Applies to RAM

\qquad
\qquad

Problem: Sort the records according to the key
Morale: What you learnt in algorithms and data
structures is not always the best when we
consider block-based storage
\qquad
PKADLEZW JCRHYEXI

I
dary storage PTKAD|LEEZW SORT in place, eg
ADDEKLIDWZ WRITE AIDEKKLPWZ
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
 many respective output files
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

2-Phase Merge Sort: Most files can be sorted in just 2 passes!

Assume

- M bytes of RAM buffer (eg, 8GB)
- B bytes per block (eg, 64KB for disk, 4KB for SSD)

Calculation:

- The assumption of Phase 2 holds when \#files < M/B
=> there can be up to M / B Phase 1 rounds
- Each round can process up to M bytes of input data
=> 2-Phase Merge Sort can sort $\mathbf{M}^{\mathbf{2}} / \boldsymbol{B}$ bytes
- eg $(8 G B)^{2} / 64 K B=\left(2^{33} \mathrm{~B}\right)^{2} / 2^{16} \mathrm{~B}=2^{50} \mathrm{~B}=1 \mathrm{~PB}$

Horizontal placement of SQL data in blocks

Relations:

- Pack as many tuples per block \qquad - improves scan time
- Do not reclaim deleted records \qquad
- Utilize overflow records if relation must be sorted on primary key
\qquad
- A novel generation of databases
features column storage
- to be discussed late in class

Pack maximum \#records per block		
name number date_code start_time end_time		
	(emmen	
"pack" each block with maximum \# records		
		${ }^{28}$

\qquad

\qquad

... back to Indices, with secondary storage in mind

\qquad

- Conventional indexes
- As a thought experiment
\qquad
- B-trees
- The workhorse of most db systems
\qquad
- Hashing schemes
- Briefly covered
\qquad
- Bitmaps \qquad
- An analytics favorite
\qquad

Terms and Distinctions

- Primary index
- the index on the attribute (a.k.a. search key) that determines the sequencing of the table
- Secondary index
- index on any other attribute
- Dense index
- every value of the indexed attribute appears in the index
- Sparse index
- many values do not appear

A Dense Primary Index

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Sparse vs. Dense Tradeoff

- Sparse: Less index space per record can keep more of index in memory
- Dense: Can tell if any record exists without accessing file

(Later:

- sparse better for insertions
- dense needed for secondary indexes)
- Treat the index as a file and build an index on it
- "Two levels are usually sufficient. More than three levels are rare."
- Q: Can we build a dense second level index for a dense index?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

A Note on Pointers

\qquad
\qquad

- Record pointers consist of block pointer and position of record in the block \qquad
- Using the block pointer only, saves space at no extra accesses cost \qquad
- But a block pointer cannot serve as record identifier
\qquad

Representation of Duplicate

\qquad Values in Primary Indexes

- Index may point to first instance of each value only

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Deletion from Dense Index

\qquad

- Deletion from dense primary index file with no duplicate values is handled in the same way with deletion from a sequential file
- Q: What about deletion from dense primary index with duplicates

Deletion from Sparse Index

\qquad
 \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Deletion from Sparse Index (cont'd)

- if the deleted entry does not appear in the index do nothing
- if the deleted entry appears in the index replace it with the next search-key value
- comment: we could leave
the deleted value in the index assuming that no part of the system may
assume it still exists
without checking the block

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Deletion from Sparse Index

 (cont'd)

Insertion in Sparse Index

\qquad
\qquad
\qquad
\qquad
\qquad
if the deleted entry does not appear in the index do nothing

- if the deleted entry appears in the index replace it with the next search-key value
- unless the next search key value has its own index entry. In this case delete the entry
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Insertion in Sparse Index

\qquad
if no new block is created then do nothing

- else create overflow record
- Reorganize periodically
- Could we claim space of next block?
How often do reorganize and how reorganize and how
much expensive it is?
- -trees offer convincing answers

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Duplicate values \& secondary indexes

\qquad

\qquad
\qquad
\qquad
\qquad

Problems:

- Need to add fields to records, messes up maintenance
- Need to follow chain to know records

Duplicate values \& secondary indexes

\qquad

\qquad
\qquad
\qquad

50
Why "bucket" + record pointers is

useful
• Enables the processing of queries working
with pointers only.

- Very common technique in Information
Retrieval

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Summary of Indexing So Far

\qquad

- Basic topics in conventional indexes
- multiple levels
- sparse/dense
- duplicate keys and buckets
- deletion/insertion similar to sequential files \qquad
- Advantages
- simple algorithms \qquad
- index is sequential file
- Disadvantages
\qquad
- eventually sequentiality is lost because of overflows, reorganizations are needed

\qquad

Outline:	
- Conventional indexes	
- B-Trees	
- Hashing schemes	

\qquad
\qquad
\qquad
\qquad
\qquad
. \qquad

- NEXT: Another type of index
- Give up on sequentiality of index \qquad
- Try to get "balance" \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$<57 \quad 57 \leq k<81 \quad 81 \leq k<95 \geq 95$
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\frac{\text { Non-root nodes have to be at least }}{\text { half-full }}$ - Use at least Non-leaf: $\quad[(n+1) / 2\rceil$ pointers Leaf: $\quad\lfloor(n+1) / 2\rfloor$ pointers to data

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

B+tree rules \quad tree of order n
(1) All leaves at same lowest level
(balanced tree)
(2) Pointers in leaves point to records
except for "sequence pointer"
:---

\qquad
\qquad
\qquad
\qquad
\qquad
(3) Number of pointers/keys for B+tree
\qquad

	Max ptrs	Max keys	Min ptrs \rightarrow data	Min keys
Non-leaf (non-root)	$n+1$	n	$\lceil(n+1) / 2\rceil$	$\lceil(n+1) / 2\rceil-1$
(non-rfoot)	$n+1$	n	$\lfloor(n+1) / 2\rfloor$	$\lfloor(n+1) / 2\rfloor$
Root	$n+1$	n	1	1

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
(a) Insert key = $32 \quad n=3$ \qquad

\qquad
\qquad
\qquad
\qquad
\qquad

(b) Coalesce with sibling \qquad

- Delete 50

(c) Redistribute keys

\qquad
- Delete 50

\qquad
\qquad
\qquad
\qquad
\qquad

74 \qquad

B+tree deletions in practice	
- Often, coalescing is not implemented - Too hard and not worth it!	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Is LRU a good policy for $\mathrm{B}+$ tree buffers?
\rightarrow Of course not!
\rightarrow Should try to keep root in memory \qquad
at all times
(and perhaps some nodes from second \qquad level)

Assumptions

- You have the right to set the block size for the disk where a B-tree will reside.
- Compute the optimum page size n assuming that
- The items are 4 bytes long and the pointers are also 4 bytes long.
- Time to read a node from disk is $12+.003 n$
- Time to process a block in memory is unimportant
- B+tree is full (I.e., every page has the maximum number of items and pointers
\rightarrow Can get:
$f(n)=$ time to find a record

\qquad
\qquad
\qquad
\qquad
\qquad

FIND $n_{\text {opt }}$ by $f^{\prime}(n)=0$
Answer should be $\mathrm{n}_{\text {opt }}=$ "few hundred"
\qquad
Answer
*) What happens to $n_{\text {opt }}$ as
\qquad

- Disk gets faster?
- CPU get faster?
\qquad
\qquad
\qquad

Outline/summary		
- Conventional Indexes •Sparse vs. dense • Primary vs. secondary		
- B+ trees - Hashing schemes - Bitmap indices	$-->$	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example hash function
- Key $=$ ' $x_{1} \mathrm{X}_{2} \ldots \mathrm{xn}^{\prime} \quad n$ byte character string
- Have b buckets
- h : add $\mathrm{x}_{1}+\mathrm{x}_{2}+\ldots . \mathrm{x}_{\mathrm{n}}$
$\quad-\quad$ compute sum modulo b

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Within a bucket:
\qquad

- Do we keep keys sorted?
- Yes, if CPU time critical \& Inserts/Deletes not too frequent \qquad
\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

Rule of thumb:

\qquad

- Try to keep space utilization \qquad between 50\% and 80\%
Utilization $=\quad \#$ keys used total \# keys that fit
- If < 50\%, wasting space
- If > 80\%, overflows
signlificant depends on how good hash
\qquad
\qquad
\qquad
function is \& on \# keys/bucket
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Extensible hashing: two ideas

(a) Use i of b bits output by hash function
\qquad
$\mathrm{h}(\mathrm{K}) \rightarrow \underbrace{\square b}_{\underbrace{00011001}}$
use $i \rightarrow$ grows over time.... \qquad
\qquad
(b) Use directory \qquad

\qquad
\qquad
\qquad
\qquad

Example: $h(k)$ is 4 bits; 2 keys/bucket

\qquad
\qquad
\qquad
"slide" conventions:
slide shows $\mathrm{h}(\mathrm{k})$, while actual directory has key+pointer \qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Extensible hashing: deletion
\qquad

- No merging of blocks
- Merge blocks
and cut directory if possible
(Reverse insert procedure)
\qquad
\qquad
\qquad
\qquad

Deletion example:	
	9

\oplus Can handle growing files

- with less wasted space
- with no full reorganizations
$\Theta \quad$ Indirection
(Not bad if directory in memory)Directory doubles in size
(Now it fits, now it does not)

\qquad

- When do we expand file?

- Keep track of: \#used slots (incl. overflow) $=$ U \#total slots in primary buckets
equiv, \#(indexed key ptr pairs)
\#total slots in primary buckets
- If $\mathrm{U}>$ threshold then increase m (and i, when m reaches 2^{i})
\oplus Can handle growing files
- with less wasted space
- with no full reorganizations
\oplus No indirection like extensible hashing
Θ Can still have overflow chains

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

$\begin{aligned} & \text { Note ATTRIBUTE LIST } \Rightarrow \text { MULTIKEY INDEX } \\ & \text { (next) } \\ & \text { e.g., CREATE INDEX foo } \underline{\text { ON } R(A, B, C)} \end{aligned}$

\qquad
\qquad

Strategy I:

- Use one index, say Dept.
- Get all Dept = "Toy" records and check their salary

\qquad
\qquad

Strategy II:	
• Use 2 Indexes; Manipulate Pointers	
Toy $_{\rightarrow \square \square \square \square}$	$\square \square \square \square \square \square-$ Sal

\qquad
For which queries is this index good?
\square Find RECs Dept $=$ "Sales" \wedge SAL $=20 \mathrm{k}$
\square Find RECs Dept $=$ "Sales" \wedge SAL $\geq 20 \mathrm{k}$
\square Find RECs Dept $=$ "Sales"
\square Find RECs SAL $=20 \mathrm{k}$

\qquad
\qquad

- Many types of geographic index structures have been suggested \qquad
- Quad Trees
- R Trees \qquad
\qquad
\qquad
\qquad
\qquad

Revisit: Processing queries without accessing records until last step

Find employees of the Toys dept with 4 years in the company SELECT Name FROM Employee WHERE Dept="Toys" AND Year=4

Bitmap indices: Alternate structure, heavily used in OLAP

Assume the tuples of the Employees table are ordered. Conceptually only!

Suits	10000000

Aaron	Suits	4
Helen	Pens	3
Jack	PCs	4
Jim	Toys	4
Joe	Toys	3
Nick	PCs	2
Walt	Toys	1
Yannis	Pens	1

00000011	1
00000100	2
01001000	3
10110000	4

\qquad
\qquad

+ Find even more quickly intersections and unions
(e.g., Dept= Toys AND Year=4)

Seems it needs too much space -> We'll do compression
? How do we deal with insertions and deletions -> Easier than you think

Compression, with Run-Length

 Encoding- Naive solution needs $m n$ bits, where m is \#distinct values and n is \#tuples
- But there is just n 1's=> let's utilize this
- Encode sequence of runs (e.g. $[3,0,1]$)

Byte-Aligned Run Length Encoding

Next key intuition: Spend fewer bits for smaller \qquad numbers

Consider the run \qquad
5, 200, 17
In binary it is \qquad
101, 11000100, 10001
A binary number of up to 7 bits $=>1$ byte A binary number of up to 14 bits $=>2$ bytes

Use the first bit of each byte to denote if it is the last one of a number
00000101, 10000001, 01000100, 00010001 130

Bit-aligned 2nlogm
 Compression (simple version)

\qquad
\qquad
\qquad

2nlog m compression \qquad

- Example
- Pens: 01000001
\qquad
- Sequence $[1,5]$
- Encoding: 01110101
\qquad
\qquad
\qquad

Insertions and deletions \& miscellaneous engineering

- Assume tuples are inserted in order
- Deletions: Do nothing
- Insertions: If tuple t with value v is inserted, add one more run in V s sequence (compact bitmap)

Summing Up...

We discussed how the database stores data + basic algorithms

- Sorting
- Indexing

How are they used in query processing?

Query Processing Notes

What happens when a query is processed and how to find out

Query Processing

- The query processor turns user queries and data modification commands into a query plan - a sequence of operations (or algorithm) on the database
- from high level queries to low level commands
- Decisions taken by the query processor
- Which of the algebraically equivalent forms of a query will lead to the most efficient algorithm?
- For each algebraic operator what algorithm should we use to run the operator?
- How should the operators pass data from one to the other? (eg, main memory buffers, disk buffers)

The differences between good plans and plans can be huge
 Example

Select B, D
From R,S
Where R.A = "c" ^ S.E = $2 \wedge$ R.C=S.C

R	B	C	S	C	D	E
	1	10		10	X	2
	1	20		20	y	2
	2	10		30	z	2
	2	35		40	x	1
	3	45		50	y	3
Answer			B	D		
			2	x		

- How do we execute query eventually? \qquad

	- Scan relations
One idea	- Do Cartesian product (literally produce all combinations of FROM clause tuples)
	- Select tuples (Where)
	- Do projection (SELECT)

\qquad
\qquad
\qquad
\qquad

- Select tuples (WHERE)
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Ex: Plan I

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Another idea:
\qquad
Plan II

\qquad
\qquad
\qquad

Scan R and S, perform on the fly selections, do join using a hash structure, project \qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Plan III

Use R.A and S.C Indexes
(1) Use R.A index to select R tuples with R.A = "c"
(2) For each R.C value found, use S.C index to find matching join tuples \qquad
(3) Eliminate join tuples $S . E \neq 2$
(4) Project B,D attributes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

From Query To Optimal Plan

- Complex process
- Algebra-based logical and physical plans \qquad
- Transformations
- Evaluation of multiple alternatives \qquad
\qquad
\qquad
\qquad

Issues in Query Processing and Optimization

- Generate Plans
employ efficient execution primitives for computing relational algebra operations
systematically transform expressions to achieve more efficient combinations of operators
- Estimate Cost of Generated Plans
- Statistics, which are reported

Algebraic Operators: A Bag version

- Union of R and S : a tuple t is in the result as many times as the sum of the number of times it is in R plus the times it is in S
- Intersection of R and S : a tuple t is in the result the minimum of the number of times it is in R and S
- Difference of R and S : a tuple t is in the result the number of times it is in R minus the number of times it is in S
- $\delta(R)$ converts the bag R into a set - SQL's R UNION S is really $\delta(R \cup S)$
- Example: Let $R=\{A, B, B\}$ and $S=\{C, A, B, C\}$.Describe the union, intersection and difference...

Extended Projection

\qquad

- project $\pi_{\mathrm{A}}, \mathrm{A}$ is attribute list
- The attribute list may include $x \rightarrow y$ in the list A to indicate
\qquad that the attribute x is renamed to y
- Arithmetic, string operators and scalar functions on attributes are allowed. For example,
- $a+b \rightarrow x$ means that the sum of a and b is renamed into x.
- $c \| d \rightarrow y$ concatenates the result of c and d into a new attribute named y
- The result is computed by considering each tuple in turn and constructing a new tuple by picking the attributes names in A and applying renamings and arithmetic and string operators
- Example:

Products and Joins

\qquad

- Product of R and $S(R \times S)$:
- If an attribute named a is found in both schemas then rename one column into R.a and the other into S.a
- If a tuple r is found n times in R and a tuple s is found m times in S then the product contains $n m$ instances of the tuple r s \qquad
- Joins
- Natural Join $R \bowtie S=\pi_{A} \sigma_{C}(R \times S)$ where \qquad
- C is a condition that equates all common attributes
- A is the concatenated list of attributes of R and S with no duplicates
- you may view tha above as a rewriting rule
- Theta Join
- arbitrary condition involving multiple attributes

Sorting and Lists

- SQL and algebra results are ordered
- Could be non-deterministic or dictated by SQL ORDER BY, algebra т \qquad
- TOrderByList
- A result of an algebraic expression o(exp) \qquad is ordered if
- If o is a T \qquad
- If o retains ordering of exp and exp is ordered
- Unfortunately this depends on implementation of o \qquad
- If o creates ordering
- Consider that leaf of tree may be $\operatorname{SCAN}(\mathrm{R})$

Relational algebra optimization
- Transformation rules
(preserve equivalence)
- A quick tour

Algebraic Rewritings:
 Commutativity and Associativity

Question 1: Do the above hold for both sets and bags? Question 2: Do commutativity and associativity hold for arbitrary Theta Joins?

Algebraic Rewritings:

Commutativity and Associativity (2)

Question 1: Do the above hold for both sets and bags? Question 2: Is difference commutative and associative?

\qquad

Exercise: Do the rule for intersection

Rules: π, σ combined
Let $x=$ subset of R attributes
$z=$attributes in predicate P (subset of R attributes)
$\pi_{x[}\left[\sigma_{p}(R)\right]=\pi_{x}\left\{\sigma_{p}\left[\pi_{x z}(R)\right]\right\}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Pushing Simple Projections Thru Binary Operators

A projection is simple if it only consists of an attribute list

Union

Question 1: Does the above hold for both bags and sets?
Question 2: Can projection be pushed below
intersection and difference?
\qquad
Answer for both bags and sets.

Exercise: Write the rewriting rule that pushes projection below theta join.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Derived Rules: $\sigma+\bowtie$ combined

More Rules can be Derived:
$\sigma_{p \wedge q}(R \bowtie S)=$
$\sigma_{\text {p^q^m }}(R \bowtie S)=$
$\sigma_{\mathrm{pvq}}(R \bowtie S)=$
\mathbf{p} only at \mathbf{R}, \mathbf{q} only at \mathbf{S}, \mathbf{m} at both \mathbf{R} and \mathbf{S}
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$-->$ Derivation for first one:
$\sigma_{p \wedge q}(R \bowtie S)=$
$\sigma_{p}\left[\sigma_{q}(R \bowtie S)\right]=$
$\sigma_{p}\left[R \bowtie \sigma_{q}(S)\right]=$
$\left[\sigma_{p}(R)\right] \bowtie\left[\sigma_{q}(S)\right]$

Which are always "good" transformations?
$\square \sigma_{\mathrm{p} 1 \wedge \mathrm{p} 2}(\mathrm{R}) \rightarrow \mathrm{O}_{\mathrm{p} 1}\left[\mathrm{O}_{\mathrm{p} 2}(\mathrm{R})\right]$
$\square \sigma_{p}(R \bowtie S) \rightarrow\left[\sigma_{p}(R)\right] \bowtie S$
$\square R \bowtie S \rightarrow S \bowtie R$
$\square \pi_{x}\left[\sigma_{p}(R)\right] \rightarrow \pi_{x}\left\{\sigma_{p}\left[\pi_{x z}(R)\right]\right\}$

In textbook: more transformations

- Eliminate common sub-expressions
- Other operations: duplicate elimination
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Bottom line:

\qquad

- No transformation is always good at the I.q.p level
- Usually good
- early selections
- elimination of cartesian products
- elimination of redundant subexpressions
- Many transformations lead to "promising" plans
- Commuting/rearranging joins
- In practice too "combinatorially explosive" to be handled as rewriting of I.q.p.

Algorithms tor Relational
 Algebra Operators

- Three primary techniques
- Sorting
- Hashing
- Indexing
- Three degrees of difficulty
- data small enough to fit in memory
- too large to fit in main memory but small enough to be handled by a "two-pass" algorithm
- so large that "two-pass" methods have to be generalized to "multi-pass" methods (quite unlikely nowadays)

The dominant cost of operators running
on disk:
- Count \# of disk blocks that must be read
(or written) to execute query plan

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Clustering index

Index that allows tuples to be read in an order that corresponds to a sort order \qquad

$\xrightarrow{\text { index }}>$| A | |
| :--- | :--- |
| 10 | |
| 15 | |
| 17 | |
| 19 | |
| 35 | |
| 37 | | \qquad

\qquad
\qquad
\qquad

Clustering can radically change cost
- Clustered relation
R1 R2 R3 R4
- Clustering index R7 R8

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

Example First we will see main memory-based implementations $\mathrm{R}^{\text {over common attribute } \mathrm{C}}$

- Iteration join (conceptually - without taking into account disk block issues)
- For each tuple of left argument, re-scan the right argument
for each $r \in R 1$ do for each $s \in R 2$ do
if $r . C=s . C$ then output r, s pair

Also called "nested loop join" in some databases (eg Postgres) \qquad

Join with index (Conceptually)

- alike iteration join but right relation \qquad accessed with index
For each $r \in$ R1 do \quad Assume R2.C index
[$\mathrm{X} \leftarrow$ index (R2, C, r.C) for each $s \in X$ do output r, s pair]
Note: $\mathrm{X} \leftarrow$ index(rel, attr, value) then $X=$ set of rel tuples with attr $=$ value
- Merge join (conceptually)
(1) if R1 and R2 not sorted, sort them \qquad
(2) $\mathrm{i} \leftarrow 1$; $\mathrm{j} \leftarrow 1$;

While $(\mathrm{i} \leq T(R 1)) \wedge(j \leq T(R 2))$ do \qquad if $R 1\{i\} . C=R 2\{j\} . C$ then outputTuples else if $R 1\{i\} . C>R 2\{j\} . C$ then $j \leftarrow j+1$ \qquad else if $R 1\{i\} . C<R 2\{j\} . C$ then $i \leftarrow i+1$

Procedure Output-Tuples

While (R1\{i\}.C = R2\{j\}.C) $\wedge(i \leq T(R 1)) d o$ \qquad $[\mathrm{jj} \leftarrow \mathrm{j}$;
while $(R 1\{i\} . C=R 2\{j j\} . C) \wedge(j j \leq T(R 2))$ do [output pair R1 $\{\mathrm{i}\}, \mathrm{R} 2\{\mathrm{jj}$;
$\mathrm{jj} \leftarrow \mathrm{j}+1$]
$\mathrm{i} \leftarrow \mathrm{i}+1 \mathrm{l}$ \qquad
\qquad
\qquad

Example			
i	R1\{i\}.C	R2\{j\}.C	j
1	10	5	1
2	20	20	2
3	20	20	3
4	30	30	4
5	40	30	5
		50	6
		52	7

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- Hash join, hashing both sides (conceptual)
- Hash function h, range $0 \rightarrow k$
- Buckets for R1: G0, G1, ... Gk \qquad
- Buckets for R2: H0, H1, .. Hk

Algorithm
(1) Hash R1 tuples into G buckets
(2) Hash R2 tuples into H buckets \qquad
(3) For $\mathrm{i}=0$ to k do match tuples in Gi , Hi buckets

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Variation: Hash one side only

\qquad

Algorithm
\qquad
(1) Hash R1 tuples into G buckets \qquad
(2) For each tuple r2 or R2 find $i=h a s h(r 2)$ \qquad
match r2 with tuples in Gi

What's the benefit in hashing both sides?
Wait till we discuss hash joins on secondary storage..

Disk-oriented Cost Model

\qquad

- There are M main memory buffers.
- Each buffer has the size of a disk block
- The input relation is read one block at a time.
\qquad
- The cost is the number of blocks read.
- (Applicable to Hard Disks:) If B consecutive \qquad blocks are read the cost is B / d.
- The output buffers are not part of the M buffers \qquad mentioned above.
- Pipelining allows the output buffers of an operator \qquad to be the input of the next one.
- We do not count the cost of writing the output.

Notation

- $B(R)=$ number of blocks that R occupies
- $T(R)=$ number of tuples of R
- $V\left(R,\left[a_{1}, a_{2}, \ldots, a_{n}\right]\right)=$ number of distinct tuples in the projection of R on a_{1}, a_{2}, \ldots, a_{n}

One-Pass Main Memory
 Algorithms for Unary Operators

- Assumption: Enough memory to keep the relation \qquad
- Projection and selection:
- Scan the input relation R and apply operator one tuple at a time
- Incremental cost of "on the fly" operators is 0 \qquad
- Duplicate elimination and aggregation
- create one entry for each group and compute the aggregated value of the group
- it becomes hard to assume that CPU cost is negligible
- main memory data structures are needed
\qquad
\qquad
\qquad

One-Pass Nested Loop Join

\qquad

- Assume $B(R)$ is less than M
- Tuples of R should be stored in an efficient lookup structure \qquad
- Exercise: Find the cost of the algorithm below
for each block $B r$ of R do
store tuples of Br in main memory
\qquad
for each each block $B s$ of S do
for each tuple s of Bs
join tuples of s with matching tuples of R

```
A variation where the inner side is organized into a hash (hash join in some databases)
for each block Br of R do
store tuples of Br in main memory
hash buckets G1,..., Gn
for each each block Bs of \(S\) do
for each tuple \(s\) of Bs
find h=hash(s)
join s with matching tuples in Gh
```

Generalization of Nested-Loops \qquad
for each chunk of $M-1$ blocks Br of R do
\qquad store tuples of Br in main memory
for each each block Bs of S do
for each tuple s of Bs

Exercise: Compute cost

Simple Sort-Merge Join

\qquad

- Assume natural join on C
- Sort R on C using the twophase multiway merge sort
- if not already sorted
- Sort S on C
- Merge (opposite side)
- assume two pointers Pr, Ps to tuples on disk, initially pointing a the start
- sets R^{\prime}, S^{\prime} in memory
- Remarks:
- Very low average memory
requirement during merging (but
no guarantee on how much is
needed)
while Pr!=EOF and Ps!=EOF if $\operatorname{Pr}[\mathrm{C}]={ }^{*} \mathrm{Ps}[\mathrm{C}]$
do_cart_prod (Pr, Ps)
else if $* \operatorname{Pr}[C]>* P s[C]$ Ps++
else if *Ps[C] $>* \operatorname{Pr}[C]$ Pr++
function do_cart_prod(Pr, Ps) val=* $\operatorname{Pr}[\mathrm{C}]$
while *Pr[C]==val
store tuple $* \mathrm{Pr}$ in set R^{\prime} while *Ps[C]==val
store tuple *Ps in set S^{\prime} output cartesian product of R^{\prime} and S^{\prime} needed)
- Cost:
\square

Efficient Sort-Merge Join

- Idea: Save two disk I/O's per block by combining the second pass of sorting with the "merge".
- Step 1: Create sorted sublists of size M for R and S
- Step 2: Bring the first block of each sublist to a buffer
- assume no more than M sublists in all
- Step 3:Repeatedly find the least C value c among the first tuples of each sublist. Identify all tuples with join value c and join them.
- When a buffer has no more tuple that has not already been considered load another block into this buffer.

Sort and Merge Join are typically separate operators

- Modularity
- The sorting needed by join is no different than the sorting needed by ORDER BY
- May be only one side or no side needs sorting

Two-Pass Hash-Based Algorithms

- General Idea: Hash the tuples of the input arguments in such a way that all tuples that must be considered together will have hashed to the same hash value.
- If there are M buffers pick $M-1$ as the number of hash buckets
- Example: Duplicate Elimination
- Phase 1: Hash each tuple of each input block into one of the $M-1$ bucket/buffers. When a buffer fills save to disk.
- Phase 2: For each bucket:
- load the bucket in main memory,
- treat the bucket as a small relation and eliminate duplicates
- save the bucket back to disk.
- Catch: Each bucket has to be less than M.
- Cost:

Hash-Join Algorithms

- Assuming natural join, use a hash function that
- is the same for both input arguments R and S
- uses only the join attributes
- Phase 1: Hash each tuple of R into one of the $M-1$ buckets R_{i} and similar each tuple of S into one of S_{i}
- Phase 2: For $i=1 \ldots M-1$
- load R_{i} and S_{i} in memory
- join them and save result to disk
- Question: What is the maximum size of buckets?
- Question: Does hashing maintain sorting?

Index-Based Join: The Simplest Version

Assume that we do natural join of $R(A, B)$ and $S(B, C)$ and there's an index on S
for each Br in R do
for each tuple r of $B r$ with B value b
use index of S to find
tuples $\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ of S with
$B=b$
output $\left\{r \boldsymbol{s}_{1} R^{r} \boldsymbol{s}_{2}, \ldots, r s_{n}\right\}$
Cost: Assuming R^{\prime} is clustered and non-sorted and the index on S is clustered on B then
$B(R)+T(R) B(S) / V(S, B)+$ some more for reading index Question: What is the cost if R is sorted?

Reading the plan that was chosen by the database (EXPLAIN)

EXPLAIN SELECT s.pid, s.first_name, s.last_name, e.credits FROM students s, enrollment e WHERE s.id = e.student AND e.class $=1$;

| Data Output Explain Messages History |
| :--- | :--- | :--- | :--- | QUERY PLAN

text
1 maah Join (costol, 07, , 2, 17 roxse3 widthole0) 2
$\mathbf{3}$$\quad \rightarrow$ Hash Cond: $(\mathrm{e}$. student $=$ s.id)
$5 \quad \rightarrow$ Bash (cost-1.03..1.03 rows $=3$ width $=100$)
\qquad
\qquad
\qquad

Notes on physical operators of
Postgres and other databases

\qquad
\qquad
\qquad
\qquad
\qquad
$\sigma_{c} \mathbf{R}$ turns into single operator

- Sequential Scan with filter c \qquad
Seq Scan on R
Filter: (c)
- Index Scan

Index Scan using <index> on R
Index Cond: (c)
\qquad
\qquad
\qquad
\qquad

Steps of joins, aggregations broken into fine granularity operators

- No sort-merge: Separate sort and merge
- Hash join has separate operation creating hash table and separate operation doing the looping
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Sorting

\qquad

- Sorting may be accomplished using index
- Rarely wins 2-phase sort if table is not clustered and is much bigger than memory
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Estimating result size

- Keep statistics for relation R
$-T(R)$: \# tuples in R
$-S(R)$: \# of bytes in each R tuple
$-B(R)$: \# of blocks to hold all R tuples \qquad
$-V(R, A)$: \# distinct values in R for attribute A

Example					
R	A	B	C	D	A: 20 byte string B: 4 byte integer C: 8 byte date D: 5 byte string
	cat	1	10	a	
	cat	1	20	b	
	dog	1	30	a	
	dog	1	40	c	
	bat	1	50	d	
$T(R)=5 \quad S(R)=37$					
$V(R, A)=3$				$V(\mathrm{R}, \mathrm{C})=5$	
$V(R, B)=1$				$V(R, D)=4$	

\qquad
\qquad
\qquad
\qquad
$T(R)=5 \quad S(R)=37$
$V(R, A)=3 \quad V(R, C)=5$
$V(R, B)=1 \quad V(R, D)=4$
\qquad
\qquad
\qquad
Size estimates for $W=R 1 \times R 2$
$T(W)=T(R 1) \times T(R 2)$
$S(W)=\quad S(R 1)+S(R 2)$

Size estimate for $W=\sigma_{z=\text { val }}(R)$
$S(W)=S(R)$
$T(W)=?$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example				
R	A	C	D	$\mathrm{V}(\mathrm{R}, \mathrm{A})=3$
	cat	10	a	$V(R, B)=1$
	cat	20	b	$V(R, C)=5$
	dog	30	a	
	dog	40	c	$V(\mathrm{R}, \mathrm{D})=4$
	bat	50	d	
$W=\sigma_{z=\text { val }}(\mathrm{R})$				

\qquad
\qquad
\qquad
\qquad
$W=\sigma_{z=\text { val }}(R) \quad T(W)=\frac{T(R)}{V(R, Z)}$ \qquad
\qquad

What about $W=\sigma_{z \geq \text { val }}(R)$?

$$
T(W)=?
$$

- Solution \# 1 :
$T(W)=T(R) / 2$
- Solution \# 2:
$T(W)=T(R) / 3$
- Solution \# 3: Estimate values in range \qquad

\qquad
\qquad
$f=\underline{20-15+1}=\underline{6} \quad$ (fraction of range)
$20-1+1 \quad 20$
$T(W)=f \times T(R)$

Equivalently:
$f \times V(R, Z)=$ fraction of distinct values
$T(W)=[f \times V(Z, R)] \times \frac{T(R)}{}=f \times T(R)$
$V(Z, R)$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Size estimate for $W=R 1 \bowtie R 2$
Let $x=$ attributes of R1 $y=$ attributes of R2 \qquad

Case $1 \quad X \cap Y=\varnothing$
Same as R1 x R2

$$
\begin{aligned}
& \text { Case } 2 \quad \mathrm{~W}=\mathrm{R} 1 \bowtie \mathrm{R} 2 \quad \mathrm{X} \cap \mathrm{Y}=\mathrm{A} \\
& \begin{array}{l|l|l|l|}
\mathrm{R} 1 & \mathrm{~A} & \mathrm{~B} & \mathrm{C} \\
& & &
\end{array} \\
& \begin{array}{l|l|l|}
\text { R2 } & \text { A } & \mathrm{D} \\
& &
\end{array}
\end{aligned}
$$

Assumption:
$\Pi_{A} R 1 \subseteq \Pi_{A} R 2 \Rightarrow$ Every A value in $R 1$ is in $R 2$ (typically A of R1 is foreign key of the primary key of A of $R 2$)
$\Pi_{A} R 2 \subseteq \Pi_{A} R 1 \Rightarrow$ Every A value in $R 2$ is in $R 1$ "containment of value sets" (justified by primary key - foreign key relationship)
\qquad

Computing T(W) when A of R1 is the

 foreign key $\Pi_{A} R 1 \subseteq \Pi_{A} R 2$
\qquad
\qquad
\qquad
1 tuple of R1 matches with exactly 1 tuple \qquad of R2
\qquad
so $\quad T(W)=T(R 1)$
\qquad

\qquad
\qquad
\qquad
\qquad
• $V(R 1, A) \leq V(R 2, A) \quad T(W)=\frac{T(R 2) T(R 1)}{V(R 2, A)}$
$\cdot V(R 2, A) \leq V(R 1, A) \quad T(W)=\frac{T(R 2) T(R 1)}{V(R 1, A)}$
$[A$ is common attribute]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
In general $W=R 1 \bowtie R 2$
$\mathrm{~T}(\mathrm{~W})=\frac{\mathrm{T}(\mathrm{R} 2) \mathrm{T}(\mathrm{R} 1)}{\max \{\mathrm{V}(\mathrm{R} 1, \mathrm{~A}), \mathrm{V}(\mathrm{R} 2, \mathrm{~A})\}}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Combining estimates on subexpressions: Value preservation	
$R(A, C)$ $S(A, B)$ $T(R)=10^{3}$ $T T(S)=10^{2}$ $V(A, R)=10{ }^{2}$ $V(A, S)=50$ $V(C, R)=10^{2}$	
$T(R \bowtie S)=$ $T(R) \times T(S) / \max (V(A, R), V(A, S))=10^{2}$ $V(C, R \bowtie S)=10^{2} \quad$ (Big) assumption: $T($ Result $)=T(R \bowtie S) / V(C, R \bowtie S)=1$	

Value preservation may have to be pushed to a
Weird assumption (but there's logic behind it!)

If in doubt, think in terms of probabilities and matching records

- A SID of Student appears in CSEEnroll with probability 1000/20000 - i.e., 5% of students are enrolled in CSE
- A SID of Student appears in Honors with probability 500/20000 - i.e., 2.5% of students are honors students
=> An SID of Student appears in the join result with probability $5 \% \times 2.5 \%$
- On the average, each SID of CSEEnroll appears in 10,000/1,000 tuples
- i.e., each CSE-enrolled student has 10 enrollments
- On the average, each SID of Honors appears in $5,000 / 500$ tuples
- i.e., each honors' student has 10 honors
\Rightarrow Each Student SID that is in both Honors and CSEEnroll is in 10×10 result tuples $\Rightarrow \mathrm{T}$ (result $)=20,000 \times 5 \% \times 2.5 \% \times 10 \times 10=2,500$ tuples

		Honors (HID, SID, ...)
Stud	T (Students) $=20,000$	T (Students) $=5,000$
V(SID, Students) $=1,000$	V(SID, Students) $=20,000$	V(SID, Students) $=500$

Plan Enumeration: Yet another source of suboptimalities

Not all possible equivalent plans are generated

- Possible rewritings may not happen
- Join sequences of n tables lead to \#plans that is exponential in n
- Eg, Postgres comes with a default exhaustive search for up to 12 joins
Morale: The plan you have in mind have not been considered

Arranging the Join Order: the WongYoussefi algorithm (INGRES)

Sample TPC-H Schema

Nation (NationKey, NName)
Customer (CustKey, CName, NationKey) Order (OrderKey, CustKey, Status) Lineitem (OrderKey, PartKey, Quantity) $\begin{gathered}\text { names of } \\ \text { suppliers that }\end{gathered}$ Product(SuppKey, PartKey, PName) Supplier(SuppKey, SName) sell a product
 of an order

SELECT SName

FROM Nation, Customer, Order, Lineltem, Product, Supplie WHERE Nation.NationKey = Cuctomer.NationKey AND Customer.CustKey = Order.CustKey AND Order.OrderKey=Lineltem.OrderKey AND Lineltem.PartKey= Product.Partkey AND Product.Suppkey = Supplier.SuppKey AND NName = "Canada"

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Wong-Yussefi algorithm assumptions and objectives

- Assumption 1 (weak): Indexes on all join attributes (keys and foreign keys)
- Assumption 2 (strong): At least one selection creates a small relation
- A join with a small relation results in a small relation
- Objective: Create sequence of indexbased joins such that all intermediate results are small

- two hyperedges for same relation are possible
each node is an attribute
- can extend for non-natural equality joins by merging nodes

Sick a small NName="Canada"	Pelation (and its ronditions) to start the plan
Nation	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Multiple Instances of Each Relation

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Multiple Instances of Each Relation

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Multiple choices are possible \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The basic dynamic programming approach to enumerating plans

for each sub-expression
$o p\left(e_{1} e_{2} \ldots e_{n}\right)$ of a logical plan

- (recursively) compute the best plan and cost for each subexpression e_{i}
- for each physical operator op ${ }^{p}$ implementing op
- evaluate the cost of computing op using op ${ }^{p}$ and the best plan for each subexpression e_{i}
- (for faster search) memo the best op ${ }^{p}$

Local suboptimality of basic approach and the Selinger improvement

\qquad

- Basic dynamic programming may lead to (globally)
\qquad suboptimal solutions
- Reason: A suboptimal plan for e_{1} may lead to the optimal plan for op $\left(e_{1} e_{2} \ldots e_{n}\right)$
- Eg, consider $e_{1} \backslash_{A} \backslash e_{2}$ and
- assume that the optimal computation of e_{1} produces unsorted result
- Optimal \searrow is via sort-merge join on A
- It could have paid off to consider the suboptimal computation of e_{1} that produces result sorted on A
- Selinger improvement: memo also any plan (that computes a subexpression) and produces an order that may be of use to ancestor operators

Using dynamic programming to optimize a join expression

- Goal: Decide the join order and join methods
- Initiate with n-ary join $\bowtie_{C}\left(e_{1} e_{2} \ldots e_{n}\right)$, where c involves only join conditions
- Bottom up: consider 2-way non-trivial joins, then 3-way non-trivial joins etc - "non trivial" -> no cartesian product

Summary

We learned

- how a database processes a query
- how to read the plan the database chose
- Including size and cost estimates

Back to action:

- Choosing Indices, with our knowledge of cost with and without indices
- What if the database cannot find the best plan?

