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Understanding the Execution of  
Analytics Queries & Applications 

MAS DSE 201 
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SQL as declarative programming 

•  SQL is a declarative programming language: 
–  The developer’s / analyst’s query only describes what 

result she wants from the database 
–  The developer does not describe the algorithm that the 

database will use in order to compute the result 
•  The database’s optimizer automatically decides 

what is the most performant algorithm that 
computes the result of your SQL query 

•  “Declarative” and “automatic” have been the 
reason for the success and ubiquitous presence 
of database systems behind applications 
–  Imagine trying to come up yourself with the algorithms 

that efficiently execute complex queries. (Not easy.) 
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What do you have to do to increase the 
performance of your db-backed app? 

•  Does declarative programming mean the developer 
does not have to think about performance? 
–  After all, the database will automatically select the most 

performant algorithms for the developer’s SQL queries 

•  No, challenging cases force the A+ SQL 
developer / analyst to think and make choices, 
because… 
– Developer decides which indices to build 
– Database may miss the best plan: Developer has 

to understand what plan was chosen and work 
around 
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Diagnostics 

•  You need to understand a few things about the 
performance of your query: 

1.  Will it benefit from indices? If yes, which are 
the useful indices? 

2.  Has the database chosen a hugely suboptimal 
plan? 

3.  How can I hack it towards the efficient way? 

 
 

Boosting performance with indices 
(a short conceptual summary) 
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How/when does an index help? Running 
selection queries without an index 

SELECT * 
FROM R 
WHERE R.A = ? 

Consider a table R with n tuples 
and the selection query 
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In the absence of an index 
the Big-O cost of evaluating  

an instance of this query 
is O(n) because the database will  
need to access the n tuples and  

check the condition  
R.A = <provided value> 
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How/when does an index help?  
Running selection queries with an index 

SELECT * 
FROM R 
WHERE R.A = ? 

Consider a table R with n tuples, an index on R.A 
and assume that R.A has m distinct values. 
We issue the same query and assume the database uses the index. 
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An index on R.A is a data structure  
that answers very efficiently the request  
“find the tuples with R.A = c” 
Then a query is answered in time O(k)  
where k is the number of tuples with R.A = c. 
Therefore the expected time to answer a selection query is O(n/m) 

Example request: Return pointers 
to tuples with R.A = 5 
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The mechanics of indices: 
How to create an index 

After you have created table students, issue command  
CREATE INDEX students_first_name ON students(first_name) 

DROP INDEX students_first_name 

Primary keys get an index automatically 

How to create an index on R.A ? 
After you have created table R, issue command  

CREATE INDEX myIndexOnRA ON R(A) 

How to remove the index you previously created ? 
DROP INDEX myIndexOnRA 

Exercise: Create and then drop an index on  
Students.first_name of the enrollment example 

9 

The mechanics of indices: 
How to use an index in a query 

•  You do not have to change your SQL queries in 
order to direct the database to use (or not use) 
the indices you created. 
–  All you need to do is to create the index! That’s easy… 

•  The database will decide automatically whether 
to use (or not use) a created index to answer 
your query. 

•  It is possible that you create an index x but the 
database may not use it if it judges that there is 
a better plan (algorithm) for answering your 
query, without using the index x. 
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Given condition on attribute find qualified 
records 

Attr = value 
 
 
Condition may also be  
•  Attr>value 
•  Attr>=value 

Indexing will help any query step  
when the problem is… 

?	 value 
Qualified records 

value 
value 

Indexing 
•  Data Stuctures used for quickly locating tuples that 

meet a specific type of condition 
–  Equality condition: find Movie tuples where Director=X 
–  Other conditions possible, eg, range conditions: find 

Employee tuples where Salary>40 AND Salary<50 
•  Many types of indexes. Evaluate them on 

–  Access time 
–  Insertion time 
–  Deletion time 
–  Space needed (esp. as it effects access time and or 

ability to fit in memory) 

Should I build an index? In the presence of 
updates, the benefit of an index has to take 

maintenance cost into account 
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In OLAP it seems beneficial to create an index 
on R.A whenever m>1 

SELECT * 
FROM R 
WHERE R.A = ? 

Recall: Table R with n tuples, an index on R.A 
and assume that R.A has m distinct values 
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The expected time to answer  
the selection query without index is O(n) 
and with index is O(n/m) 
It appears that an index is beneficial if m>1 
but if database stored in secondary storage you will need m>>1  
because the cost is blocks! 

To Index or Not to Index 

•  Which queries can use indices and how? 
•  What will they do without an index? 

– Some surprisingly efficient algorithms that 
do not use indices 

14 

Understanding Storage and 
Memory 
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Memory Hierarchy 
•  Cache memory 

–  On-chip and L2 
–  Increasingly important 

•  RAM (controlled by db system) 
–  Addressable space includes virtual 

memory but DB systems avoid it 

•  SSDs 
–  Block-based storage  

•  Disk 
–  Block 
–  Preference to sequential access 

•  Tertiary storage for archiving 
–  Tapes, jukeboxes, DVDs 
–  Does not matter any more 
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Non-Volatile Storage is important to 
OLTP even when RAM is large 

•  Persistence important for transaction 
atomicity and durability 

•  Even if database fits in main memory 
changes have to be written in non-
volatile storage 

•  Hard disk 
•  RAM disks w/ battery 
•  Flash memory 
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Peculiarities of storage mediums 
affect algorithm choice 

•  Block-based access:  
– Access performance: How many blocks 

were accessed 
– How many objects 
– Flash is different on reading Vs writing 

•  Clustering for sequential access: 
– Accessing consecutive blocks costs less on 

disk-based systems 

•  We will only consider the effects of 
block access 
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Moore’s Law: Different Rates of 
Improvement Lead to Algorithm & 

System Reconsiderations 

•  Processor speed 
•  Main memory bit/$ 
•  Disk bit/$ 
•  RAM access speed 
•  Disk access speed 
•  Disk transfer rate 
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Clustered/sequential  
access-based algorithms 
for disk became relatively 

better 
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Moore’s Law: Same 
Phenomenon Applies to RAM 
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Algorithms that access 
memory sequentially 
have better constant 

factors than algorithms 
that access randomly 

2-Phase Merge Sort: An algorithm 
tuned for blocks (and sequential access) 

P K A D L E Z W J C R H Y F X I 

Assume a file with many records. 
Each record has a key and other data. 
For ppt brevity, the slide shows only the  
key of each record and not its data. 
Assume each block has 2 records. 
Assume RAM buffer fits 4 blocks (8 records) 
In practice, expect many more records 
per block and many more records fitting in buffer. 

record 
key 

file 

block 

Problem: Sort the records according to the key. 
Morale: What you learnt in algorithms and data 
structures is not always the best when we  
consider block-based storage 

RAM buffer 
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2-Phase Merge Sort 

P K A D L E Z W J C R H 

A D K P 

SORT 
in place, eg 
quicksort 

A D E K 

READ 

WRITE 

Y F X I 

P K A D L E Z W 

L D K P P W Z A D K P A D E K L D K P P W Z 

Phase 1, round 1 

RAM buffer 

Secondary storage 
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2-Phase Merge Sort 

P K A D L E Z W J C R H 

SORT 

A D K P 

SORT 

C F H I 

READ 

WRITE 

Y F X I 

J C R H Y F X I 

J D K P R X Y 

A D K P A D E K L D K P P W Z 

C F H I J R X Y 

Phase 1, round 2  
Phase 2 continues 
until no more records 

RAM buffer Secondary storage 

1st file 

2nd file 

In practice, probably many more Phase 1 rounds and  
many respective output files 
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2-Phase Merge Sort 

P K A D L E Z W J C R H 

M
ER

G
E 

Y F X I 

A D K P A D E K L D K P P W Z 

C F H I J R X Y 

A D K P A C D E … 

Improvement: Bring max number of blocks in memory. 

Phase 2 
Assume #files < #blocks that fit in RAM buffer. 
Fetch the first block of each file in RAM buffer. 
Merge records and output. 
When all records of a block have been output, 
   bring next block of same file 
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2-Phase Merge Sort: Most files can be 
sorted in just 2 passes! 

Assume 
•  M bytes of RAM buffer (eg, 8GB) 
•  B bytes per block (eg, 64KB for disk, 4KB for SSD) 
Calculation: 
•  The assumption of Phase 2 holds when #files < M/B 
=> there can be up to M/B  Phase 1 rounds 
•  Each round can process up to M bytes of input data 
=> 2-Phase Merge Sort can sort M2/B bytes 

–  eg (8GB)2/64KB = (233B)2 / 216B= 250B = 1PB 

Horizontal placement of SQL 
data in blocks 

Relations: 
•  Pack as many tuples per block 

–  improves scan time 

•  Do not reclaim deleted records 
•  Utilize overflow records if relation must 

be sorted on primary key 
•  A novel generation of databases 

features column storage 
–  to be discussed late in class  
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Sample relational database 

id pid first_name last_name 
1 8888888 John Smith 
2 1111111 Mary Doe 
3 2222222 null Chen 

Students 

id name number date_code start_time end_time 
1 Web stuff CSE135 TuTh 2:00 3:20 
2 Databases CSE132A TuTh 3:30 4:50 
4 VLSI CSE121 F null null 

Classes 

id class student credits 
1 1 1 4 
2 1 2 3 
3 4 3 4 
4 1 3 3 

Enrollment 



10 

Pack maximum #records per 
block 
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id name number date_code start_time end_time 
1 Web CSE135 TuTh 2:00 3:20 
2 Databases CSE132A TuTh 3:30 4:50 
4 VLSI CSE121 F null null 

Classes 

2  Databases CSE132A TuTh 3:30  4:50 1  Web         CSE135   TuTh 2:00  3:20 4  VLSI         CSE121   F      3:30  4:50 

“pack” each block with maximum # records 

Utilize overflow blocks for insertions 
with “out of order” primary keys 
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id name number date_code start_time end_time 
1 Web CSE135 TuTh 2:00 3:20 
2 Databases CSE132A TuTh 3:30 4:50 
3 PL CSE130 TuTh 9:00 9:50 
4 VLSI CSE121 F null null 

Classes 

2  Databases CSE132A TuTh 3:30  4:50 1  Web         CSE135   TuTh 2:00  3:20 4  VLSI         CSE121   F      3:30  4:50 

just inserted 
tuple 

3  PL             CSE130  TuTh 9:00  9:50 

Overflow block 
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… back to Indices, with secondary 
storage in mind 

•  Conventional indexes 
– As a thought experiment 

•  B-trees 
– The workhorse of most db systems 

•  Hashing schemes 
– Briefly covered 

•  Bitmaps 
– An analytics favorite 
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Terms and Distinctions 
•  Primary index 

–  the index on the attribute 
(a.k.a. search key) that 
determines the 
sequencing of the table 

•  Secondary index 
–  index on any other 

attribute 

•  Dense index 
–  every value of the 

indexed attribute appears 
in the index 

•  Sparse index 
–  many values do not 

appear 
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A Dense Primary Index 
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120
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150

Sequential 
File 

Dense and Sparse Primary 
Indexes 
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Dense Primary Index 
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Sparse Primary Index 
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Find the index record with largest 
value that is less or equal to the 

value we are looking. 
+ can tell if a value exists without  

    accessing file (consider projection) 
+ better access to overflow records 

+ less index space 

more + and - in a while 
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Sparse vs. Dense Tradeoff 

•  Sparse: Less index space per record 
          can keep more of index 

in memory 
•  Dense:  Can tell if any record exists

          without accessing file 
 
(Later:  

–  sparse better for insertions 
–  dense needed for secondary indexes) 
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Multi-Level Indexes  

•  Treat the index as 
a file and build an 
index on it 

•  “Two levels are 
usually sufficient. 
More than three 
levels are rare.” 

•  Q: Can we build a 
dense second level 
index for a dense 
index ? 
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400
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270
300
350
400
460
500
550
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750
920
1000

A Note on Pointers 

•  Record pointers consist of block pointer 
and position of record in the block 

•  Using the block pointer only, saves 
space at no extra accesses cost 

•  But a block pointer cannot serve as 
record identifier 

Representation of Duplicate 
Values in Primary Indexes 

•  Index may point to 
first instance of each 
value only 
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Deletion from Dense Index 
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Delete 40, 80 

Header
Header

Lists of available entries 

•  Deletion from dense 
primary index file 
with no duplicate 
values is handled in 
the same way with 
deletion from a 
sequential file 

•  Q: What about 
deletion from dense 
primary index with 
duplicates 

Deletion from Sparse Index 

•  if the deleted entry 
does not appear in 
the index do nothing 
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HeaderDelete 40 

Deletion from Sparse Index 
(cont’d) 

•  if the deleted entry 
does not appear in the 
index do nothing 

•  if the deleted entry 
appears in the index 
replace it with the next 
search-key value 
–  comment: we could leave 

the deleted value in the 
index assuming that no 
part of the system may 
assume it still exists 
without checking the 
block 

Delete 30 
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Header
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Deletion from Sparse Index 
(cont’d) 

•  if the deleted entry 
does not appear in the 
index do nothing 

•  if the deleted entry 
appears in the index 
replace it with the next 
search-key value 

•  unless the next search 
key value has its own 
index entry. In this case 
delete the entry 

Delete 40, then 30 
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Insertion in Sparse Index 

•  if no new block is 
created then do 
nothing 
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Insertion in Sparse Index 

•  if no new block is 
created then do nothing 

•  else create overflow 
record 
–  Reorganize periodically 
–  Could we claim space of 

next block? 
–  How often do we 

reorganize and how 
much expensive it is? 

–  B-trees offer convincing 
answers 
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Secondary indexes 

Sequence 
field 

50 

30 

70 

20 

40 
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100 

60 

90 

File not sorted on  
secondary search key 
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Secondary indexes 

Sequence 
field 

50 
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•  Sparse index 

30 
20 
80 
100 

90 
... 

does not make sense! 
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Secondary indexes 

Sequence 
field 

50 
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•  Dense index 
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10 
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90 
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sparse 
high 
level 

First level has to be dense, 
next levels are sparse (as usual) 



16 

46 

Duplicate values & secondary indexes 
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Duplicate values & secondary indexes 
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30 

10 
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40 

40 
40 
... 

one option... 

Problem: 
excess overhead! 

•  disk space 
•  search time 
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Duplicate values & secondary indexes 
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10 
another option: lists of pointers 

40 
30 

20 Problem: 
variable size 
records in 

index! 
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Duplicate values & secondary indexes 
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λ 

λ 

λ 

λ 
Yet another idea : 

Chain records with same key? 
Problems: 

•  Need to add fields to records, messes up maintenance 
•  Need to follow chain to know records 
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Duplicate values & secondary indexes 
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buckets 
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Why “bucket” + record pointers is 
useful 

Indexes    Records 
Name: primary  EMP (name,dept,year,...) 

Dept: secondary 
Year: secondary 

 

•  Enables the processing of queries working 
 with pointers only. 

•  Very common technique in Information  
 Retrieval 
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Advantage of Buckets: Process 
Queries Using Pointers Only 

Find employees of the Toys dept with 4 years in the company 
SELECT Name FROM Employee  

WHERE Dept=“Toys” AND Year=4 

Toys
PCs
Pens
Suits

Dept Index 
Aaron Suits 4
Helen Pens 3
Jack PCs 4
Jim Toys 4
Joe Toys 3
Nick PCs 2
Walt Toys 5
Yannis Pens 1

1
2
3
4

Year Index 

Intersect toy bucket and  
2nd Floor bucket to get  
set of matching EMP’s 

53 

This idea used in  
 text information retrieval 

Documents 
...the cat is  
     fat ... 

...my cat and my  
dog like each  

other... 
...Fido the  
     dog ... Buckets known as 

Inverted lists 

cat 

dog 

Summary of Indexing So Far 
•  Basic topics in conventional indexes 

– multiple levels 
– sparse/dense 
– duplicate keys and buckets 
– deletion/insertion similar to sequential files 

•  Advantages 
– simple algorithms 
–  index is sequential file 

•  Disadvantages 
– eventually sequentiality is lost because of 

overflows, reorganizations are needed 



19 

55 

Example   Index (sequential) 
 
 
 

  continuous 
 
 

  free space 

10   
20   
30   

40   
50   
60   

70   
80   
90   

39      
31      
35       
36      

32      
38      
34      

33 

overflow area 
(not sequential) 
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Outline:  

•  Conventional indexes 
•  B-Trees                   ⇒ NEXT 
•  Hashing schemes 

57 

•  NEXT: Another type of index 
– Give up on sequentiality of index 
– Try to get “balance” 
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Root 
 

B+Tree Example     n=3 
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Sample non-leaf 

 
 
 
 
to keys  to keys   to keys   to keys 

< 57   57≤ k<81   81≤k<95   ≥95 
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Sample leaf node: 

     From non-leaf node 
 

       to next leaf 
       in sequence 57
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In textbook’s notation   n=3 

Leaf: 
 
 
Non-leaf: 
 

30
 

35
 

30
 

30 35 

30 

62 

Size of nodes:   n+1 pointers 
     n keys   (fixed) 

63 

Non-root nodes have to be at least 
half-full 

•  Use at least 

Non-leaf:  ⎡(n+1)/2⎤ pointers 
 
Leaf:   ⎣(n+1)/2⎦  pointers to data 
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    Full node   min. node 
 
Non-leaf 
 
 
Leaf 

n=3 

12
0 

15
0 

18
0 

30
 

3 5 11
 

30
 

35
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B+tree rules   tree of order n 

(1) All leaves at same lowest level   
  (balanced tree) 

(2) Pointers in leaves point to records  
  except for “sequence pointer” 
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(3) Number of pointers/keys for B+tree 
 

Non-leaf 
(non-root) n+1 n ⎡(n+1)/2⎤  ⎡(n+1)/2⎤- 1 

Leaf (non-root) n+1 n 

Root n+1 n 1 1 

Max  Max  Min             Min  
ptrs  keys  ptrs→data    keys 

⎣(n+1)/2⎦  ⎣(n+1)/2⎦ 
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Insert into B+tree 

(a) simple case 
–  space available in leaf 

(b) leaf overflow 
(c) non-leaf overflow 
(d) new root 
   

68 

(a) Insert key = 32 n=3 
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(a) Insert key = 7 n=3 

3 5 11
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0 

3 5 

7 

7 
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(c) Insert key = 160 
 

n=3 
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0 
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(d) New root,  insert 45 n=3 
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new root 
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(a) Simple case - no example 

(b) Coalesce with neighbor (sibling) 

(c) Re-distribute keys 
(d) Cases (b) or (c) at non-leaf 

Deletion from B+tree 
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(b) Coalesce with sibling 
– Delete 50 
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40
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(c) Redistribute keys 
– Delete 50 
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(d) Non-leaf coalese 
– Delete 37 

n=4 

40
 

30
 

25
 

25
 

new root 
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B+tree deletions in practice 

– Often, coalescing is not implemented 
–  Too hard and not worth it! 

77 

Is LRU a good policy for B+tree buffers? 

→ Of course not! 
→ Should try to keep root in 

memory 
  at all times 

(and perhaps some nodes from second 
level) 

78 

Hardware+ indexing problem: 

 For B+tree, how large should n be? 
 

… 

n is number of keys / node 
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Assumptions 

•  You have the right to set the block size for 
the disk where a B-tree will reside.  

•  Compute the optimum page size n assuming 
that 
–  The items are 4 bytes long and the pointers are 

also 4 bytes long. 
–  Time to read a node from disk is 12+.003n 
–  Time to process a block in memory is unimportant 
–  B+tree is full (I.e., every page has the maximum 

number of items and pointers 

80 

➸Can get: 
   f(n) = time to find a record 

f(n)  
 
 
      
       nopt    n 

81 

➸ FIND nopt by f’(n) = 0 

 Answer should be nopt = “few hundred” 

➸ What happens to nopt  as 

• Disk gets faster? 
• CPU get faster? 
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Outline/summary 

•  Conventional Indexes 
• Sparse vs. dense 
• Primary vs. secondary 

•  B+ trees 
•  Hashing schemes   -->  Next 
•  Bitmap indices 

Hashing 

•  hash function h(key) 
returns address of 
bucket 

•  if the keys for a 
specific hash value 
do not fit into one 
page the bucket is a 
linked list of pages 

key         h(key)        

Buckets Records 

key 

84 

Example hash function 

•  Key = ‘x1 x2 … xn’   n byte character string 
•  Have b buckets 
•  h:  add x1 + x2 + ….. xn 

–     compute sum modulo b 
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➽ This may not be best function … 
➽ Read Knuth Vol. 3 if you really   

 need to select a good function. 

Good hash  ? Expected number of 
  function:   keys/bucket is the 

     same for all buckets 

86 

Within a bucket: 

•  Do we keep keys sorted? 

• Yes, if CPU time critical 
   & Inserts/Deletes not too 

frequent 

87 

Next: example to illustrate
     inserts, 

overflows, deletes 

   
   h(K) 
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EXAMPLE  2 records/bucket 

INSERT: 
h(a) = 1 
h(b) = 2 
h(c) = 1 
h(d) = 0 

0 

1 

 
2 

 
3 

d 

a 
c 
b 

h(e) = 
1 

e 

89 

0 

1 

 
2 

 
3 

a 

b 
c 
e 

d 

EXAMPLE:  deletion 

Delete: 
e 
f 

f 
g 

maybe move 
“g” up 

c 
d 

90 

Rule of thumb: 
•  Try to keep space utilization 
 between 50% and 80% 

      Utilization =    # keys used 
               total # keys that fit 

•  If < 50%, wasting space 
•  If > 80%, overflows 

significant     depends 
on how good hash   

 function is & on # keys/bucket 
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How do we cope with growth? 

•  Overflows and reorganizations 
•  Dynamic hashing 

• Extensible 
• Linear 

92 

Extensible hashing: two ideas 

(a) Use i of b bits output by hash function 
      b 

   h(K) →  
 
     use i → grows over time…. 

00110101 

93 

(b) Use directory 
 
h(K)[0-i ]       to bucket 

. . . 

. . . 
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Example: h(k) is 4 bits; 2 keys/bucket 

i = 1 
1 

1 

0001 

1001 

1100 

“slide” conventions: 
•  slide shows h(k), while actual directory has key+pointer 

95 

Example: h(k) is 4 bits; 2 keys/bucket 

i = 1 
1 

1 

0001 

1001 

1100 

Insert 
1010 

1 
1100 

1010 

New directory 

2 
00 

01 

10 

11 

i = 

2 

2 

96 

1 
0001 

2 
1001 

1010 

2 
1100 

Insert: 

0111 

0000 

00 

01 

10 

11 

2 i = 

Example continued 

0111 

0000 

0111 

0001 

2 

2 
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00 

01 

10 

11 

2 i = 

2 1001 

1010 

2 1100 

2 0111 

2 0000 

0001 

Insert: 

1001 

Example continued 

1001 

1001 

1010 

000 

001 

010 

011 

100 

101 

110 

111 

3 i = 

3 

3 
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Extensible hashing:  deletion 

•  No merging of blocks 
•  Merge blocks  

     and cut directory if possible 
  (Reverse insert procedure) 

99 

Deletion example: 

•  Run thru insert example in reverse! 
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   Extensible hashing 

 Can handle growing files 
  - with less wasted space 
  - with no full reorganizations 

Summary 

+ 

 Indirection 
  (Not bad if directory in memory) 

 Directory doubles in size 
  (Now it fits, now it does not) 

- 

- 

101 

Linear hashing 
•  Another dynamic hashing scheme 

Two ideas: 

(a) Use i  low order bits of 
hash 01110101 

grows 

b 

i 

(b) File grows linearly 

102 

Example   b=4 bits,    i =2,   2 keys/bucket 

00              01             10   11 

0101 
1111 

0000 
1010 

m = 01 (max used block) 

Future 
growth 
buckets 

If h(k)[i ] ≤ m, then 
      look at bucket h(k)[i ] 

   else, look at bucket h(k)[i ] - 
2i -1    

 

Rule 

0101 
•  can have overflow chains! 
•  insert 0101 
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Example   b=4 bits,    i =2,   2 keys/bucket 

00              01              10  11 

0101 
1111 

0000 
1010 

m = 01 (max used block) 

Future 
growth 
buckets 

10 

1010 

0101 •  insert 0101 

11 

1111 
0101 

104 

Example Continued: How to grow beyond this? 

00              01              10  11 

1111 1010 0101 
0101 

0000 

m = 11 (max used block) 

i = 2 

0 0 0 0 
100           101             110        111 

3 

. . . 

100 

100 

101 

101 
0101 
0101 

105 

•  If U > threshold then increase m 
   (and i, when m reaches 2i ) 

☛ When do we expand file? 

• Keep track of:  #used slots (incl. overflow)     
          #total slots in primary buckets 

= U 

equiv, #(indexed key ptr pairs)__________ 
#total slots in primary buckets 
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 Linear Hashing 

  Can handle growing files 
  - with less wasted space 
  - with no full reorganizations 
  
  No indirection like extensible hashing 

 

Summary 

+ 

+ 

  Can still have overflow chains - 

107 

Example: BAD CASE 

    Very full 
 
 

  Very empty     Need to move 
       m here… 
       Would waste 
       space... 
   

108 

 Hashing 
  - How it works 
  - Dynamic hashing 
   - Extensible 
   - Linear 

Summary 
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Next: 

•  Indexing vs Hashing 
•  Index definition in SQL 
•  Multiple key access 

110 

•  Hashing good for probes given key 
  e.g.,    SELECT … 
      FROM R 
    WHERE R.A = 5 

Indexing vs Hashing 

111 

•  INDEXING (Including B Trees) good for 
  Range Searches: 
  e.g.,   SELECT 

    FROM R 
    WHERE R.A > 5 

Indexing vs Hashing 
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Index definition in SQL 

•  Create index name on rel (attr) 
•  Create unique index name on rel (attr) 

defines candidate 
key 

• Drop INDEX 
name 

113 

     CANNOT SPECIFY TYPE OF INDEX 
   (e.g. B-tree, Hashing, …) 
     OR PARAMETERS 
   (e.g. Load Factor, Size of Hash,...) 

 
     ... at least in SQL... 

Note 

114 

       ATTRIBUTE LIST ⇒ MULTIKEY INDEX 
       (next) 
   e.g., CREATE INDEX foo ON R(A,B,C) 

Note 
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Motivation: Find records where 
      DEPT = “Toy” AND SAL > 50k 

Multi-key Index 

116 

Strategy I: 

•  Use one index, say Dept. 
•  Get all Dept = “Toy” records 

            and check their salary 

I1 

117 

•  Use 2 Indexes; Manipulate Pointers 

Toy        Sal 
        > 50k

  

Strategy II: 
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•  Multiple Key Index 

One idea:   

Strategy III: 

I1 

I2 

I3 

119 

Example 

       Example 
       Record 

 
Dept 
Index 
 
    Salary 
    Index 

Name=Joe 
DEPT=Sales 

SAL=15k 

Art 
Sales 
Toy 

10k 
15k 
17k 
21k 

12k 
15k 
15k 
19k 

120 

For which queries is this index good? 

Find RECs Dept = “Sales”      SAL=20k 
Find RECs Dept = “Sales”      SAL > 20k 
Find RECs Dept = “Sales” 
Find RECs SAL = 20k 
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Interesting application: 

•  Geographic Data 

      DATA: 

       <X1,Y1, Attributes> 
       <X2,Y2, Attributes> 

 

x 

y 

. 
. 

. 

122 

Queries: 

•  What city is at <Xi,Yi>? 
•  What is within 5 miles from <Xi,Yi>? 
•  Which is closest point to <Xi,Yi>? 

123 

        

h 
n 

b 

i a 

c o 

d 

10      20 

10      20 

Example 

e 

g 

f 

m 

l 

k 
j 25 15  35 20 

40 

30 

20 

10 

h  i a  b c d  e f g 

n  o m l j  k 

•  Search points near f 
•  Search points near b 

5 

15 15 
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Queries 

•  Find points with Yi > 20 
•  Find points with Xi < 5 
•  Find points “close” to i = <12,38> 
•  Find points “close” to b = <7,24> 

125 

•  Many types of geographic index   
 structures have been suggested 
• Quad Trees 
• R Trees 

126 

Outline/summary 

•  Conventional Indexes 
• Sparse vs. dense 
• Primary vs. secondary 

•  B+ trees 
•  Hashing schemes 
•  Bitmap indices   -->  Next 
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Revisit: Processing queries without 
accessing records until last step 
Find employees of the Toys dept with 4 years in the company 

SELECT Name FROM Employee  
WHERE Dept=“Toys” AND Year=4 

Toys
PCs
Pens
Suits

Dept Index 
Aaron Suits 4
Helen Pens 3
Jack PCs 4
Jim Toys 4
Joe Toys 3
Nick PCs 2
Walt Toys 5
Yannis Pens 1

1
2
3
4

Year Index 

Bitmap indices: Alternate 
structure, heavily used in OLAP 

128 

Toys 00011010 
PCs 00100100 
Pens 01000001 
Suits 10000000 

 

 

Dept Index 
Aaron Suits 4
Helen Pens 3
Jack PCs 4
Jim Toys 4
Joe Toys 3
Nick PCs 2
Walt Toys 1 
Yannis Pens 1 

 

 

00000011 1 
00000100 2 
01001000 3 
10110000 4 

 

 

Assume the tuples of the Employees table are ordered. 

+ Find even more quickly intersections and unions  
(e.g., Dept=“Toys” AND Year=4) 
?  Seems it needs too much space -> We’ll do compression 
?  How do we deal with insertions and deletions -> Easier than you think 

Year Index 
Conceptually only! 

Compression, with Run-Length 
Encoding 

•  Naive solution needs mn bits, where m is #distinct 
values and n is #tuples 

•  But there is just n 1’s=> let’s utilize this 
•  Encode sequence of runs (e.g. [3,0,1]) 

129 

Toys: 00011010 

3 0 1 
First run says: 

The first ace appears  
after 3 zeros  

Second run says: 
The 2nd ace appears  

immediately after the 1st  

Third run says: 
The 3rd ace appears  

after 1 zero after the 2nd   



44 

Byte-Aligned Run Length 
Encoding 

130 

Next key intuition: Spend fewer bits for smaller 
numbers 
 
Consider the run 
5, 200, 17 
In binary it is 
101,  11000100, 10001 
 
A binary number of up to 7 bits => 1 byte 
A binary number of up to 14 bits => 2 bytes 
… 
Use the first bit of each byte to denote if it is the 
last one of a number 
00000101, 10000001, 01000100, 00010001 

Bit-aligned 2nlogm 
Compression (simple version) 

Toys: 00011010 

3 0 1 
First run says: 

The first ace appears  
after 3 zeros  

Second run says: 
The 2nd ace appears  

immediately after the 1st  

Third run says: 
The 3rd ace appears  

after 1 zero after the 2nd   

1011 00 0 1 
10 says: The binary encoding of the first number  

needs 1+1 digits. 
11 says: The first number is 3 

2nlog m compression 

•  Example 
•  Pens: 01000001 
•  Sequence [1,5] 
•  Encoding: 01110101 

132 
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Insertions and deletions & 
miscellaneous engineering 

•  Assume tuples are inserted in order 
•  Deletions: Do nothing 
•  Insertions: If tuple t with value v is 

inserted, add one more run in v’s 
sequence (compact bitmap) 

133 

Summing Up… 

We discussed how the database stores 
data + basic algorithms 

•  Sorting 
•  Indexing 
How are they used in query processing? 

134 

Query Processing Notes 

What happens when a query is 
processed and how to find out 
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Query Processing 

•  The query processor turns user queries and 
data modification commands into a query 
plan - a sequence of operations (or algorithm) 
on the database 
–  from high level queries to low level commands 

•  Decisions taken  by the query processor 
–  Which of the algebraically equivalent forms of a 

query will lead to the most efficient algorithm? 
–  For each algebraic operator what algorithm should 

we use to run the operator? 
–  How should the operators pass data from one to 

the other? (eg, main memory buffers, disk buffers) 

The differences between good plans 
and plans can be huge 
Example 

 Select B,D 
 From R,S 
 Where R.A = “c”  ∧  S.E = 2   ∧  R.C=S.C 

   R  A  B  C      S  C  D  E 

 a  1  10   10  x  2 

 b  1  20   20  y  2 

 c  2  10   30  z  2 

 d  2  35   40  x  1 

 e  3  45   50  y  3 

Answer  B     D 
  2      x 
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•  How do we execute query eventually? 

      
    - Scan relations 
    - Do Cartesian product 

     (literally produce all 
 combinations of  

FROM clause tuples) 

    - Select tuples (WHERE) 
    - Do projection (SELECT) 

One idea 

RxS   R.A  R.B  R.C  S.C  S.D  S.E 

    a    1   10   10    x    2 

    a    1   10   20    y    2 
    . 
    . 

    C    2   10   10    x    2 
    . 
    . 

Bingo! 

Got one... 

Relational Plan: 

Ex: Plan I 
    ΠB,D 
     

     σR.A=“c”∧ S.E=2 ∧ R.C=S.C	

	
	 	 	 	 X 
   R   S 

 

1.  Scan R 
2.  For each tuple r of R scan S 
3.  For each (r,s), where s in S 

  select and project on the fly 

SCAN SCAN 

FLY 

FLY 

OR:ΠB,D [ σR.A=“c”∧ S.E=2 ∧ R.C = S.C (R     X S     )]	FLY FLY SCAN SCAN 
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Ex: Plan I 
    ΠB,D 
     

     σR.A=“c”∧ S.E=2 ∧ R.C=S.C	

	
	 	 	 	 X 
   R   S 

 

“FLY” and “SCAN” are the defaults 

Another idea: 

 
    ΠB,D  

 

    σR.A = “c”   σS.E = 2 
 

   R     S 

Plan II 

            natural join 

Scan R and S, perform on the fly selections,  
do join using a hash structure, project 

HASH 

   R              S 

A  B  C  σ (R)  σ(S)      C  D  E 

a  1  10        A   B  C       C  D  E      10  x  2 

b  1  20  c   2  10     10  x  2     20  y  2 

c  2  10          20  y  2     30  z  2 

d  2  35          30  z  2     40  x  1 

e  3  45                                         50  y  3 
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Plan III  
 Use R.A and S.C Indexes 

 (1) Use R.A index to select R tuples  
   with R.A = “c” 

 (2) For each R.C value found, use S.C 
   index to find matching join tuples 

 (3) Eliminate join tuples S.E ≠ 2 
 (4) Project B,D attributes 

   R              S 

A  B  C         C  D  E 

a  1  10                    10  x  2 

b  1  20         20  y  2 

c  2  10                30  z  2 

d  2  35                40  x  1 

e  3  45                                         50  y  3 

 	

A C 
I1 I2 

=“c” 

<c,2,10> <10,x,2> 

check=2? 

output: <2,x> 

next tuple: 
<c,7,15> 

π	

R 
S 

R.B, S.D 
σ	S.E=2 

σ	R.a=“c” 
INDEX 

RI 

Right Index Join 

Algebraic Form of Plan 
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From Query To Optimal Plan 

•  Complex process 
•  Algebra-based logical and physical plans 
•  Transformations 
•  Evaluation of multiple alternatives 

Issues in Query Processing and 
Optimization 

•  Generate Plans 
–  employ efficient execution primitives for computing relational 

algebra operations  
–  systematically transform expressions to achieve more 

efficient combinations of operators 
•  Estimate Cost of Generated Plans 

–  Statistics, which are reported 

parse 

convert 

Generate/Transform lqp’s 

estimate result sizes 

generate physical plans 

estimate costs 

pick best 

execute 

{P1,P2,…..} 

{(P1,C1),(P2,C2)...} 

Chosen Plan 

   answer 

SQL query 

parse tree 

logical query plan (algebra) 

“improved” l.q.p(s) 

l.q.p. +sizes 

statistics 

Scope of responsibility 
of each module may 

is fuzzy 

Generate/Transform pqp’s 
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Algebraic Operators: A Bag 
version 

•  Union of R and S: a tuple t is in the result as many times as 
the sum of the number of times it is in R plus the times it is 
in S 

•  Intersection of R and S: a tuple t is in the result the 
minimum of the number of times it is in R and S 

•  Difference of R and S: a tuple t is in the result the number 
of times it is in R minus the number of times it is in S 

•  δ(R) converts the bag R  into a set 
–  SQL’s R UNION S  is really δ(R∪ S) 

•  Example: Let R={A,B,B} and S={C,A,B,C}.Describe the 
union, intersection and difference... 

Extended Projection 
•  project πΑ , A is attribute list 

–  The attribute list may include x→y in the list A to indicate 
that the attribute x is renamed to y 

–  Arithmetic, string operators and scalar functions on 
attributes are allowed. For example,  

•  a+b→x means that the sum of a and b is renamed into x. 
•  c||d→y concatenates the result of c and d into a new attribute 

named y 

•  The result is computed by considering each tuple 
in turn and constructing a new tuple by picking the 
attributes names in A  and applying renamings and 
arithmetic and string operators 

•  Example: 

Products and Joins 
•  Product of R and S (R×S): 

–  If an attribute named a is found in both schemas then 
rename one column into R.a and the other into S.a 

–  If a tuple r is found n times in R and a tuple s is found m 
times in S then the product contains nm instances of the 
tuple rs 

•  Joins 
–  Natural Join R    S = πΑ σC(R×S) where 

•  C is a condition that equates all common attributes 
•  A is the concatenated list of attributes of R and S with no 

duplicates 
•  you may view tha above as a rewriting rule 

–  Theta Join  
•  arbitrary condition involving multiple attributes 
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Grouping and Aggregation 
•  γGroupByList; aggrFn1 → attr1 ,

…,aggrFnN → attrN  

•  Conceptually, grouping 
leads to nested tables 
and is immediately 
followed by functions that 
aggregate the nested 
table 

•  Example: γDept; AVG(Salary) → 
AvgSal ,…, SUM(Salary) → SalaryExp  

Name Dept Salary
Joe Toys 45
Nick PCs 50
Jim Toys 35
Jack PCs 40

Employee 

Find the average salary for each department 
SELECT Dept, AVG(Salary) AS AvgSal, 
 SUM(Salary) AS SalaryExp 
FROM Employee 
GROUP-BY Dept 

Dept AvgSal SalaryExp 
Toys 40 80 
PCs 45 90 

Dept Nested Table 
Name  Salary 

Toys Joe        45 
Jim        35 

PCs Nick       50 
Jack      40 

Sorting and Lists 
•  SQL and algebra results are ordered 
•  Could be non-deterministic or dictated by 

SQL ORDER BY, algebra τ 
•  τOrderByList 
•  A result of an algebraic expression o(exp) 

is ordered if 
–  If o is a τ 
–  If o retains ordering of exp and exp is ordered 

•  Unfortunately this depends on implementation  of o 
–  If o creates ordering 
– Consider that leaf of tree may be SCAN(R) 

Relational algebra optimization 

•  Transformation rules 
 (preserve equivalence) 

•  A quick tour 
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Algebraic Rewritings: 
Commutativity and Associativity 

R 

S T 

× 

× T 

R S 

× 

× 
R S 

× 

Commutativity Associativity 

R 

S T 

T 

R S 
R S S R 

S R 

× Cartesian  
Product 

Natural 
Join 

Question 1: Do the above hold for both sets and bags?  
Question 2: Do commutativity and associativity hold 
for arbitrary Theta Joins? 

Algebraic Rewritings: 
Commutativity and Associativity (2) 

R 

S T 

∪ 

∪ T 

R S 

∪ 

∪ 
R S 

∪ 

Commutativity Associativity 

R 

S T 

T 

R S 
R S S R 

S R 

∪ 

∩ ∩ ∩ 

∩ ∩ 

∩ 

Union 

Intersection 

Question 1: Do the above hold for both sets and bags? 
Question 2: Is difference commutative and associative? 

Algebraic Rewritings for Selection: 
Decomposition of Logical Connectives 

σ	cond2 

σ	cond1 

R σ	cond1 AND cond2 
R 

σ	cond1 OR cond2 
R 

∪ 

σ	cond2 

R 

σ	cond1 

σ	cond1 

σ	cond2 

R 

Does it apply 
to bags? 
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Algebraic Rewritings for Selection: 
Decomposition of Negation 

σ	cond1 AND NOT cond2 
R 

Question 

σ	NOT cond2 
R 

σ	cond1 OR NOT cond2 
R 

Complete 

Pushing the Selection Thru Binary 
Operators: Union and Difference 

σ	

R S 

cond 
∪ σ	cond 

S 

σ	cond 
R 

∪ 

σ	

R S 

cond 
- 

σ	cond 
S 

σ	cond 
R 

- 

S 

σ	cond 
R 

- 

Union 

Difference 

Exercise: Do the rule for intersection 

Pushing Selection thru 
Cartesian Product and Join 

σ	

R S 

cond 
× σ	cond 

S 
R 

× 
The right direction 

requires that cond refers to S  
attributes only 

σ	

R S 

cond 
σ	cond 
S 

R 

The right direction 
requires that cond refers to S  

attributes only 

The right direction 
requires that all the attributes used  

by cond appear in both R and S  

σ	cond 
S 

R 

σ	cond 

Exercise: Do the rule for theta join 
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Rules:   π,σ  combined 

Let x = subset of R attributes 
    z = attributes in predicate P   

  (subset of R attributes) 
 

πx[σp (R) ] =   
 

     {σp [ πx  (R) ]}  
 
 πx  
 

 πxz 
 

Pushing Simple Projections 
Thru Binary Operators 

A projection is simple if it only consists of an attribute list 

π	

R S 

A 
∪ π	A 

S 

π	A 
R 

∪ 
Union 

Question 1: Does the above hold for both bags and sets? 
Question 2: Can projection be pushed below 

 intersection and difference?  
 Answer for both bags and sets. 

Pushing Simple Projections Thru Binary 
Operators: Join and Cartesian Product 

π	

R S 

A 
× 

π	C 
S 

π	B 
R 

× 

π	A Where B is the list  
of R attributes that 
appear in A.  
Similar for C. 

π	

R S 

A 

π	C 
S 

π	B 
R 

π	A 

Exercise: Write the rewriting rule that pushes projection 
below theta join. 

Question: What is B 
and C ? 
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Projection Decomposition 

π	XY 

π	X 

R 
X 

R 

π	

More Rules can be Derived: 

σp∧q (R      S) = 

σp∧q∧m (R      S) = 

σpvq (R      S) = 
 

Derived Rules:  σ +      combined  

p only at R, q only at S, m at both R and S 

--> Derivation for first one: 

σp∧q (R      S)  = 

σp [σq (R      S) ] = 

σp [ R      σq (S) ] = 

[σp (R)]      [σq (S)] 
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σp1∧p2 (R) → σp1 [σp2 (R)]  

σp (R     S) → [σp (R)]       S 
R      S  →   S       R 

πx [σp (R)] → πx {σp [πxz (R)]} 

Which are always “good” 
transformations? 

In textbook: more transformations 

•  Eliminate common sub-expressions 
•  Other operations: duplicate elimination 

Bottom line: 

•  No transformation is always good at the 
l.q.p level 

•  Usually good 
– early selections 
– elimination of cartesian products  
– elimination of redundant subexpressions  

•  Many transformations lead to “promising” 
plans 
– Commuting/rearranging joins 
–  In practice too “combinatorially explosive” to 

be handled as rewriting of l.q.p. 
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Algorithms for Relational 
Algebra Operators 

•  Three primary techniques 
– Sorting 
– Hashing 
–  Indexing 

•  Three degrees of difficulty 
– data small enough to fit in memory 
–  too large to fit in main memory but small 

enough to be handled by a “two-pass” 
algorithm 

– so large that “two-pass” methods have to be 
generalized  to “multi-pass” methods (quite 
unlikely nowadays) 

The dominant cost of operators running 
on disk: 

•  Count # of disk blocks that must be read 
(or written) to execute query plan 

Clustering index 

Index that allows tuples to be read in an 
order that corresponds to a sort order 
      A 

 
A 

index 

10 
15 
17 

19 
35 
37 
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Clustering can radically change cost 

•  Clustered relation 
       ….. 

•  Clustering index 

R1 R2 R3 R4 R5 R5 R7 R8 

Pipelining can radically change 
cost 

•  Interleaving of operations 
across multiple operators 

•  Smaller memory footprint, 
fewer object allocations 

•  Operators support: 
–  open() 
–  getNext() 
–  close() 

•  Simple for unary 
•  Pipelined operation for binary 

discussed along with 
physical operators 

π 

parent 

child 

open() 
getNext() 
close() 

class project 
 open() 
 { return child.open() } 
 
 getNext() 
 { return child.getNext() }  

Example    R1      R2 over common attribute C 

First we will see main memory-based 
implementations 
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•  Iteration join (conceptually – without 
taking into account disk block issues) 

•  For each tuple of left argument, re-scan 
the right argument 

  for each r ∈ R1 do 
      for each s ∈ R2 do 
   if r.C = s.C then output r,s pair 

Also called “nested loop join” in some databases  
(eg Postgres) 

•  Join with index  (Conceptually)  
– alike iteration join but right relation 

accessed with index 
For each r ∈ R1 do 

 [ X  ←  index (R2, C, r.C) 
  for each s ∈ X do  
   output r,s pair] 

Assume R2.C index 

Note:  X ← index(rel, attr, value) 
  then X = set of rel tuples with attr = value 

•  Merge join (conceptually) 
(1) if R1 and R2 not sorted, sort them 
(2) i ← 1; j ← 1; 
  While (i ≤ T(R1)) ∧  (j ≤ T(R2)) do 
      if R1{ i }.C = R2{ j }.C then outputTuples 
      else if R1{ i }.C > R2{ j }.C then j ← j+1 
      else if R1{ i }.C < R2{ j }.C then i ← i+1 
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Procedure Output-Tuples 
 While (R1{ i }.C = R2{ j }.C) ∧ (i ≤ T(R1)) do 
  [jj ← j; 

         while (R1{ i }.C = R2{ jj }.C) ∧ (jj ≤ T(R2)) do 
          [output pair R1{ i }, R2{ jj };  
    jj ← jj+1  ] 

       i ← i+1  ] 
   

Example 

i      R1{i}.C   R2{j}.C   j 
1    10        5    1 
2    20       20   2 
3    20       20   3 
4    30       30   4 
5    40       30   5 

         50   6 
         52   7   

•  Hash join, hashing both sides (conceptual)
   

– Hash function h, range 0 → k 
– Buckets for R1: G0, G1, ... Gk 
– Buckets for R2: H0, H1, ... Hk 
Algorithm 
(1) Hash R1 tuples into G buckets 
(2) Hash R2 tuples into H buckets 
(3) For i = 0 to k do 

  match tuples in Gi, Hi buckets 
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Simple example     hash: even/odd 

R1  R2     Buckets 
2  5   Even  
4  4         R1    R2 
3     12   Odd:  
5   3 
8  13 
9   8 

  11 
  14 

2 4 8 4 12 8 14 

3 5 9 5 3 13 11 

Variation: Hash one side only 

What’s the benefit in hashing both sides?  
Wait till we discuss hash joins on secondary storage…  

Algorithm 
(1) Hash R1 tuples into G buckets 
(2) For each tuple r2 or R2 

  find i=hash(r2)   
  match r2 with tuples in Gi 

Disk-oriented Cost Model 
•  There are M main memory buffers.  

– Each buffer has the size of a disk block 
•  The input relation is read one block at a time. 
•  The cost is the number of blocks read. 
•  (Applicable to Hard Disks:) If B consecutive 

blocks are read the cost is B/d. 
•  The output buffers are not part of the M buffers 

mentioned above. 
– Pipelining allows the output buffers of an operator 

to be the input of the next one. 
– We do not count the cost of writing the output. 
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Notation 

•  B(R) = number of blocks that R  occupies 
•  T(R) = number of tuples of R 
•  V(R,[a1, a2 ,…, an]) = number of distinct 

tuples in the projection of R on a1, a2 ,…, 
an 

One-Pass Main Memory 
Algorithms for Unary Operators 

•  Assumption: Enough memory to keep the relation 
•  Projection and selection: 

–  Scan the input relation R and apply operator one tuple at a 
time 

–  Incremental cost of “on the fly” operators is 0 

•  Duplicate elimination and aggregation 
–  create one entry for each group and compute the 

aggregated value of the group 
–  it becomes hard to assume that CPU cost is negligible 

•  main memory data structures are needed 

for each block Br of R do 
  store tuples of Br in main memory 
for each each block Bs of S do 
  for each tuple s of Bs 
    join tuples of s with matching tuples of R 

One-Pass Nested Loop Join 
•  Assume B(R) is less than M 
•  Tuples of R should be stored in an 

efficient lookup structure 
•  Exercise: Find the cost of the 

algorithm below 
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A variation where the inner side is organized into a 
hash (hash join in some databases)  

for each block Br of R do 
  store tuples of Br in main memory 

   hash buckets G1,…, Gn 
for each each block Bs of S do 
  for each tuple s of Bs 

 find h=hash(s) 
     join s with matching tuples in Gh 

Generalization of Nested-Loops 

for each chunk of M-1 blocks Br of R do 
  store tuples of Br in main memory 
  for each each block Bs of S do 
    for each tuple s of Bs 
      join tuples of s with matching tuples of R 

Exercise: Compute cost 

Simple Sort-Merge Join 
•  Assume natural join on C 
•  Sort R on C using the two-

phase multiway merge sort 
–  if not already sorted 

•  Sort S on C 
•  Merge (opposite side)  

–  assume two pointers Pr,Ps to 
tuples on disk, initially pointing at 
 the start 

–  sets R’, S’ in memory  

•  Remarks: 
–  Very low average memory 

requirement during merging (but 
no guarantee on how much is 
needed) 

–  Cost:  

while Pr!=EOF and Ps!=EOF 
  if *Pr[C] == *Ps[C] 
    do_cart_prod(Pr,Ps) 
  else if *Pr[C] > *Ps[C] 
    Ps++ 
  else if *Ps[C] > *Pr[C] 
    Pr++ 
 
function do_cart_prod(Pr,Ps) 
  val=*Pr[C] 
  while *Pr[C]==val  
    store tuple *Pr in set R’  
  while *Ps[C]==val  
    store tuple *Ps in set S’;  
  output cartesian product 

 of R’ and S’ 
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Efficient Sort-Merge Join 

•  Idea: Save two disk I/O’s per block by combining 
the second pass of sorting with the ``merge”. 

•  Step 1: Create sorted sublists of size M for R and S 
•  Step 2: Bring the first block of each sublist to a 

buffer 
–  assume no more than M sublists in all 

•  Step 3:Repeatedly find the least C value c among 
the first tuples of each sublist. Identify all tuples with 
join value c and join them.  
–  When a buffer has no more tuple that has not already 

been considered load another block into this buffer. 

Efficient Sort-Merge Join 
Example 

C  RA  
1   r1 
2   r2 
3   r3 

… 
20  r20 

R 

C  SA  
1   s1 

... 
5   s5 

16   s16 
… 

20  s20 

S 

Assume that after first phase of  
multiway sort we get 4 sublists, 

2 for R and 2 for S. 
Also assume that each block contains 

two tuples. 

3  7  8 10 11 13 14 16 17 18 
1  2   4  5   6  9   12 15 19 20 

R 

 1  3   5 17   
2  4   16  18  19 20 

S 

Sort and Merge Join are 
typically separate operators 

•  Modularity  
– The sorting needed by join is no different than 

the sorting needed by ORDER BY 
•  May be only one side or no side needs 

sorting 
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Two-Pass Hash-Based 
Algorithms 

•  General Idea: Hash the tuples of the input arguments in 
such a way that all tuples that must be considered together 
will have hashed to the same hash value. 
–  If there are M buffers pick M-1 as the number of hash buckets 

•  Example: Duplicate Elimination 
–  Phase 1: Hash each tuple of each input block into one of the 

 M-1 bucket/buffers. When a buffer fills save to disk. 
–  Phase 2: For each bucket: 

•  load the bucket in main memory,  
•  treat the bucket as a small relation and eliminate duplicates  
•  save the bucket back to disk. 

–  Catch: Each bucket has to be less than M. 
–  Cost: 

Hash-Join Algorithms 

•  Assuming natural join, use a hash function that 
–  is the same for both input arguments R and S 
–  uses only the join attributes 

•  Phase 1: Hash each tuple of R into one of the M-1 
buckets Ri and similar each tuple of S into one of 
Si 

•  Phase 2: For i=1…M-1 
–  load Ri and Si in memory 

–  join them and save result to disk 
•  Question: What is the maximum size of buckets? 
•  Question: Does hashing maintain sorting? 

Index-Based Join: The Simplest 
Version 

for each Br in R do 
  for each tuple r of Br with B value b 

 use index of S to find  
       tuples {s1 ,s2 ,...,sn} of S with 
B=b 

 output {rs1 ,rs2 ,...,rsn} 

Assume that we do natural join of R(A,B) and S(B,C) 
and there’s an index on S 

Cost: Assuming R is clustered and non-sorted and the 
index on S is clustered on B then  
B(R)+T(R)B(S)/V(S,B) + some more for reading index 
Question: What is the cost if R is sorted? 
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Reading the plan that was chosen 
by the database (EXPLAIN) 

EXPLAIN SELECT  s.pid, s.first_name, s.last_name, e.credits 
FROM    students s, enrollment e 
WHERE s.id = e.student 
        AND e.class = 1; 
 

Notes on physical operators of 
Postgres and other databases 

201 

σc R turns into single operator  

•  Sequential Scan with filter c 
		Seq	Scan	on	R	
				Filter:	(c) 
•  Index Scan  
		Index	Scan	using	<index>	on	R			
				Index	Cond:	(c)	
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202 

Steps of joins, aggregations broken 
into fine granularity operators 

•  No sort-merge: Separate sort and merge 
•  Hash join has separate operation creating hash 

table and separate operation doing the looping 

203 

Sorting 

•  Sorting may be accomplished using index 
–  Rarely wins 2-phase sort if table is not clustered and is 

much bigger than memory 

•  Estimating cost of query plan 

(1) Estimating size of results 
(2) Estimating run time (often reduces to 

#IOs) 
Both estimates can go very wrong! How does the 

database estimate 
size of such 

intermediate results? 

How does the 
database estimate 

query run time? 
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Estimating result size 

•  Keep statistics for relation R 
– T(R) : # tuples in R 
– S(R) : # of bytes in each R tuple 
– B(R): # of blocks to hold all R tuples 
– V(R, A) : # distinct values in R 
    for attribute A 

Example 
        R     A: 20 byte string 

      B: 4 byte integer 
      C: 8 byte date 
      D: 5 byte string 

A B C D 
cat 1 10 a 
cat 1 20 b 
dog 1 30 a 
dog 1 40 c 
bat 1 50 d 

T(R) = 5     S(R) = 37 
V(R,A) = 3   V(R,C) = 5 
V(R,B) = 1   V(R,D) = 4 

Size estimates  for W = R1 x R2 

T(W) = 
 
S(W) = 

T(R1) × T(R2) 
 
S(R1) + S(R2) 
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S(W) = S(R) 
 
T(W) = ? 

Size estimate  for W = σZ=val (R) 

Example 
         R      V(R,A)=3 

       V(R,B)=1 
       V(R,C)=5 
       V(R,D)=4 

 
 

W = σz=val(R)    T(W) =  
 

A B C D 
cat 1 10 a 
cat 1 20 b 
dog 1 30 a 
dog 1 40 c 
bat 1 50 d 

T(R) 
V(R,Z) 

What about W = σz ≥ val (R)   ? 

  T(W) = ?      

•   Solution # 1: 
  T(W) =  T(R)/2     

•   Solution # 2: 
  T(W) =  T(R)/3     
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•  Solution # 3:   Estimate values in range 
 
Example  R Z 

Min=1      V(R,Z)=10 

      W= σz ≥ 15 (R) 

Max=20 

f = 20-15+1 = 6      (fraction of range) 
      20-1+1     20 
 
T(W) = f × T(R) 

Equivalently: 
      f×V(R,Z) = fraction of distinct values 
T(W)  = [f × V(Z,R)] ×T(R)    =  f × T(R)  

                  V(Z,R) 

Size estimate  for W = R1      R2 

Let x = attributes of R1 
     y = attributes of R2 

    X ∩ Y = ∅ 

   Same as R1 x R2 

Case 1 
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   W = R1      R2      X ∩ Y = A 
R1    A     B     C        R2    A   D 

Case 2 

Assumption: 
ΠA R1  ⊆ ΠA R2  ⇒  Every A value in R1 is in R2 

    (typically A of R1 is foreign key 
     of the primary key of A of R2) 
ΠA R2 ⊆ ΠA R1  ⇒  Every A value in R2 is in R1 
“containment of value sets”   (justified by primary 

 key – foreign key relationship) 
 

R1    A    B     C        R2    A   D 

Computing T(W)   when A of R1 is the  

 foreign key ΠA R1  ⊆ ΠA R2 

1 tuple of R1 matches with exactly 1 tuple 
of R2 

so     T(W)   =     T(R1) 

R1    A    B     C        R2    A   D 

Another way to approach when 

 ΠA R1  ⊆ ΠA R2 

Take  
1 tuple Match 

1 tuple matches with   T(R2)        tuples... 
         V(R2,A)  

so     T(W)   =     T(R2)   × T(R1) 

            V(R2, A)  
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•  V(R1,A)  ≤ V(R2,A)   T(W) = T(R2) T(R1) 

                 V(R2,A) 
 

•  V(R2,A)  ≤ V(R1,A)   T(W)  =  T(R2) T(R1) 

                   V(R1,A) 
 
[A is common attribute] 

T(W)  =           T(R2) T(R1) 
   max{ V(R1,A), V(R2,A) } 

In general    W = R1      R2 

Combining estimates on subexpressions: 
Value preservation 

σ	

R S 

C=1 
S 

R 

σ	C=1 

R(A, C) 
T(R) = 103 

V(A, R) = 103 

V(C, R) = 102 

S(A, B) 
T(S) = 102 

V(A, S) = 50 

T(R      S) =  
  T(R) x T(S) / max(V(A,R), V(A, S)) = 102 

V(C, R      S) = 102  (Big) assumption:  
Value preservation of C 

Result = 

T(Result) = T(R      S) / V(C, R      S) = 1  

Result = 
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Value preservation may have to be pushed to a 
weird assumption (but there’s logic behind it!) 

σ	

R S 

C=1 
S 

R 

σ	C=1 

R(A, C) 
T(R) = 103 

V(A, R) = 103 

V(C, R) = 102 

S(A, B) 
T(S) = 102 

V(A, S) = 50 

T(R      S) = 102 

V(C, R      S) = 102  

Result = 

T(Result) = 1  

Result = 

T(σc=1R) = T(R) / V(C, R) = 10 
V(A, σc=1R) = 103 
T(Result) =  
 T(σc=1R)  x T(S) / max(V(A , σc=1R), V(A, S)) = 1  

We had to extend value preservation to the  
weird  assumption that attribute A has 
more values than the number of tuples in R. 
In this way the number of S tuples matching  
an R tuple stays steady 

Ideally, the size 
estimation should 
not depend on which 
of the two equivalent 
formulas for Result 
one uses. However,  
to achieve this we may 
need to push the value  
preservation assumption  
to artificial intermediate 
estimates… 

Value preservation of join attribute 

Students(SID, …) 
CSEenroll(EID, SID, …) Honors (HID, SID, …) 

Foreign-to-primary 

T(Students) = 20,000 
V(SID, Students) = 20,000 T(CSEenroll) = 10,000 

V(SID, CSEenroll) = 1,000 

T(Honors) = 5,000 
V(SID, Honors) = 500 

T(CSEenroll(EID, SID, …)        Students(SID, …)        Honors (HID, SID, …)) = ? 

CSEenroll Students 

T(.) = 10,000 
V(SID, .) ?= 1,000 (preservation of SIDs in CSEenroll) 
               or 20,000 (preservation of SIDs in Students) ? 

Honors 

T(.) = 10,000 x 5,000 / max(500, 20,000) = 2,500  CORRECT 
          10,000 x 5,000 / max(500, 1,000) = 50,000  WRONG 

If in doubt, think in terms of probabilities and 
matching records 

Students(SID, …) 
CSEenroll(EID, SID, …) Honors (HID, SID, …) 

Foreign-to-primary 

T(Students) = 20,000 
V(SID, Students) = 20,000 T(Students) = 10,000 

V(SID, Students) = 1,000 

T(Students) = 5,000 
V(SID, Students) = 500 

T(CSEenroll(EID, SID, …)        Students(SID, …)        Honors (HID, SID, …)) = ? 

•  A SID of Student appears in CSEEnroll with probability 1000/20000 
•  i.e., 5% of students are enrolled in CSE 

•  A SID of Student appears in Honors with probability 500/20000 
•  i.e., 2.5% of students are honors students 

=> An SID of Student appears in the join result with probability 5% x 2.5%  
•  On the average, each SID of CSEEnroll appears in 10,000/1,000 tuples 

•  i.e., each CSE-enrolled student has 10 enrollments  
•  On the average, each SID of Honors appears in 5,000/500 tuples 

•  i.e., each honors’ student has 10 honors 
⇒ Each Student SID that is in both Honors and CSEEnroll is in 10x10 result tuples  
⇒  T(result) = 20,000 x 5% x 2.5% x 10 x 10 = 2,500 tuples 
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Plan Enumeration: Yet another 
source of suboptimalities 

Not all possible equivalent plans are 
generated 

•  Possible rewritings may not happen 
•  Join sequences of n tables lead to #plans 

that is exponential in n 
– Eg, Postgres comes with a default exhaustive 

search for up to 12 joins 
Morale: The plan you have in mind have not 

been considered 

Arranging the Join Order: the Wong-
Youssefi algorithm (INGRES) 

Sample TPC-H Schema 
Nation(NationKey, NName) 
Customer(CustKey, CName, NationKey) 
Order(OrderKey, CustKey, Status) 
Lineitem(OrderKey, PartKey, Quantity) 
Product(SuppKey, PartKey, PName) 
Supplier(SuppKey, SName) 

SELECT SName 
FROM Nation, Customer, Order, LineItem, Product, Supplier 
WHERE Nation.NationKey = Cuctomer.NationKey 

 AND Customer.CustKey = Order.CustKey 
 AND Order.OrderKey=LineItem.OrderKey 
 AND LineItem.PartKey= Product.Partkey 
 AND Product.Suppkey = Supplier.SuppKey 
 AND NName = “Canada” 

Find the 
names of 

suppliers that 
sell a product 
that appears 
in a line item 
of an order 
made by a 

customer who 
is in Canada 

Challenges with Large Natural Join 
Expressions 

For simplicity, assume that in the query 
1.  All joins are natural 
2. whenever two tables of the FROM clause have common 

 attributes we join on them 
1.  Consider Right-Index only 

Nation Customer Order LineItem Product Supplier 

σNName=“Canada” 

πSName 

One possible order 

RI 

RI 

RI 

RI 

RI 

Index 
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Multiple Possible Orders 

Nation Customer Order 
LineItem Product Supplier 

σNName=“Canada” 

πSName 

RI 

RI 

RI 

RI 

RI 

Wong-Yussefi algorithm 
assumptions and objectives 

•  Assumption 1 (weak): Indexes on all join 
attributes (keys and foreign keys) 

•  Assumption 2 (strong): At least one 
selection creates a small relation 
– A join with a small relation results in a small 

relation 
•  Objective: Create sequence of index-

based joins such that all intermediate 
results are small 

Hypergraphs 

 
 

CName 
 

CustKey 

NationKey       NName 

                        Status       OrderKey  
 

Quantity 
 

PartKey SuppKey       PName                    SName                                

•  relation hyperedges 
•  two hyperedges for same relation are possible  

•  each node is an attribute 
•  can extend for non-natural equality joins by merging nodes  

Nation 
Customer 

Order 
LineItem 

Product 

Supplier 
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Small Relations/Hypergraph Reduction 

 
 

CName 
 

CustKey 

NationKey       NName 

                        Status       OrderKey  
 

Quantity 
 

PartKey SuppKey       PName                    SName                                

Nation 

Customer 

Order 
LineItem 

Product 

Supplier 

NationKey       NName 

“Nation” is small 
because it has the 
equality selection 

NName = “Canada” 

Nation 

σNName=“Canada” 
Index Pick a small 

relation (and its 
conditions) to start 

the plan 

 
 

CName 
 

CustKey 

NationKey       NName 

                        Status       OrderKey  
 

Quantity 
 

PartKey SuppKey       PName                    SName                                

Nation 

Customer 

Order 
LineItem 

Product 

Supplier 

NationKey       NName 

Nation 

σNName=“Canada” 
Index 

RI 

Remove small 
relation (hypergraph 
reduction) and color 

as “small” any 
relation that joins 
with the removed 
“small” relation  

Customer 

Pick a small 
relation (and its 

conditions if any) 
and join it with the 
small relation that 
has been reduced 

After a bunch of steps… 

Nation Customer Order LineItem Product Supplier 

σNName=“Canada” 

πSName 

RI 

RI 

RI 

RI 

RI 

Index 
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Multiple Instances of Each Relation 

SELECT S.SName 
FROM Nation, Customer, Order, LineItem L, Product P, Supplier S, 

   LineItem LE, Product PE, Supplier Enron 
WHERE Nation.NationKey = Cuctomer.NationKey 

 AND Customer.CustKey = Order.CustKey 
 AND Order.OrderKey=L.OrderKey 
 AND L.PartKey= P.Partkey 
 AND P.Suppkey = S.SuppKey 
 AND Order.OrderKey=LE.OrderKey 
 AND LE.PartKey= PE.Partkey 
 AND PE.Suppkey = Enron.SuppKey 
 AND Enron.Sname = “Enron” 
 AND NName = “Cayman” 

Find the 
names of 
suppliers 

whose 
products 

appear in an 
order made by 

a customer 
who is in 
Cayman 

Islands and an 
Enron product 
appears in the 

same order 

Multiple Instances of Each Relation 

 
 

CName 
 

CustKey 

NationKey       NName 

                        Status       OrderKey  
 

Quantity 
 

PartKey SuppKey       PName                    SName                                

Nation 
Customer 

Order 
LineItem L 

Product P 

Supplier S 

SuppKey              PName      PartKey   SName                                

Product PE 

Supplier Enron 

LineItem LE 

Quantity 

Multiple choices are possible 

 
 

CName 
 

CustKey 

NationKey       NName 

                        Status       OrderKey  
 

Quantity 
 

PartKey SuppKey       PName                    SName                                

Nation 
Customer 

Order 
LineItem L 

Product P 

Supplier S 

SuppKey              PName      PartKey   SName                                

Product PE 

Supplier Enron 

LineItem LE 

Quantity 
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CName 
 

CustKey 

NationKey       NName 

                        Status       OrderKey  
 

Quantity 
 

PartKey SuppKey       PName                    SName                                

Nation 
Customer 

Order 
LineItem L 

Product P 

Supplier S 

SuppKey              PName      PartKey   SName                                

Product PE 

Supplier Enron 

LineItem LE 

Quantity 

 
 

CName 
 

CustKey 

NationKey       NName 

                        Status       OrderKey  
 

Quantity 
 

PartKey SuppKey       PName                    SName                                

Nation 
Customer 

Order 
LineItem L 

Product P 

Supplier S 

SuppKey              PName      PartKey   SName                                

Product PE 

Supplier Enron 

LineItem LE 

Quantity 

Nation Customer Order 

σNName=“Cayman” 

RI 

RI 

Index 

Enron PE LE 

σSName=“Enron” 

RI RI 

Index 

LineItem Product Supplier 

RI 

RI 

RI 
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The basic dynamic programming 
approach to enumerating plans 

for each sub-expression     
 op(e1 e2 … en) of a logical plan  

–  (recursively) compute the best plan and cost for 
each subexpression ei 

–  for each physical operator opp implementing op 
• evaluate the cost of computing op using opp 

and the best plan for each subexpression ei 

•  (for faster search) memo the best opp 

 

Local suboptimality of basic approach and 
the Selinger improvement 

•  Basic dynamic programming may lead to (globally) 
suboptimal solutions 

•  Reason: A suboptimal plan for e1 may lead to the optimal 
plan for op(e1 e2 … en)  
–  Eg, consider e1    A    e2 and  
–  assume that the optimal computation of e1 produces unsorted 

result 
–  Optimal          is via sort-merge join on A 
–  It could have paid off to consider the suboptimal computation of 

e1 that produces result sorted on A 

•  Selinger improvement: memo also any plan (that 
computes a subexpression) and produces an order that 
may be of use to ancestor operators 

Using dynamic programming to 
optimize a join expression 

•  Goal: Decide the join order and join 
methods 

•  Initiate with n-ary join   C (e1 e2 … en), 
where c involves only join conditions 

•  Bottom up: consider 2-way non-trivial 
joins, then 3-way non-trivial joins etc 
–  “non trivial” -> no cartesian product 
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Summary 
We learned  
•  how a database processes a query 
•  how to read the plan the database chose  

–  Including size and cost estimates 
 
Back to action: 
•  Choosing Indices, with our knowledge of 

cost with and without indices 
•  What if the database cannot find the best 

plan? 


