
1

MAS 201

Database design & SQL programming

2

App Server

Web Application
(jsp, servlet…)

Applications’ View of a Relational
Database Management System
(RDBMS): Why use it?
•  Persistent data structure

–  Large volume of data

•  High-level language/API
for reading (querying) &
 writing (inserting, deleting,
 updating)

–  Automatically optimized
•  Transaction management (ACID)

–  Atomicity: all or none happens,
despite failures &errors

–  Consistency
–  Isolation: appearance of “one at a time”
–  Durability: recovery from failures and other errors

RDBMS
JDBC Client

Relations,
cursors,
other…

JDBC
SQL commands

RDBMS
Server

Relational
Database

3

OLTP Vs OLAP use cases

OLTP
•  Support quick

ACID transactions
•  Eg, Bank application

that manages
transactions

OLAP
•  Perform analytics

on the database
•  Eg, Bank application

analyzing customer
profiles towards
marketing

•  All well-known databases can do both
•  But may not be very efficient in analytics
•  Many new databases focused on analytics

•  Organizations may have two databases – OLTP vs OLAP
•  Or 3+

•  The jury is out on whether two kinds of databases will be needed

2

4

Data Structure: Relational Model

•  Relational Databases:
Schema + Data

•  Schema:
–  collection of tables

(also called relations)
–  each table has a set

of attributes (aka columns)
–  no repeating table names,

no repeating attributes in
one table

•  Data (also called instance):
–  set of tuples (aka rows)
–  tuples have one atomic value

 for each attribute

ID Title Actor
1 Wild Winger
2 Sky Winger
3 Reds Beatty
4 Tango Brando
5 Tango Winger
7 Tango Snyder

Movie

ID Theater Movie
1 Odeon 1
2 Forum 3
3 Forum 2

Schedule

5

Data Structure: Primary Keys;
Foreign Keys are value-based pointers

•  “ID is primary key of Schedule” => its value is
unique in Schedule.ID

•  “Schedule.Movie is foreign key (referring) to
Movie.ID” means every Movie value of Schedule
also appears as Movie.ID

•  Intuitively, Schedule.Movie operates as pointer to
Movie(s)

ID Title Director Actor
1 Wild Lynch Winger
2 Sky Berto Winger
3 Reds Beatty Beatty
4 Tango Berto Brando
5 Tango Berto Winger
7 Tango Berto Snyder

Movie

ID Theater Movie
1 Odeon 1
2 Forum 3
3 Forum 2

Schedule

6

Schema design has its own intricacies

•  This example is a bad schema design!
•  Problems

–  Change the name of a theater
–  Change the name of a movie’s director
–  What about theaters that play no movie?

ID Title Director Actor
1 Wild Lynch Winger
2 Sky Berto Winger
3 Reds Beatty Beatty
4 Tango Berto Brando
5 Tango Berto Winger
7 Tango Berto Snyder

ID Theater Movie
1 Odeon 1
2 Forum 3
3 Forum 2

Schedule
Movie

3

7

How to Design a Database and
Avoid Bad Decisions

•  With experience…
•  Normalization rules of database design instruct

how to turn a “bad” design into a “good” one
–  a well-developed mathematical theory
–  no guidance on how to start
–  does not solve all problems

•  MAS 201: Think entities and relationships –
then translate them to tables

•  MAS 201: The special case of star & snowflake
schemas

Designing Schemas Using
Entity-Relationship modeling

The Basics

9

Data Structure: Relational Model

Example Problem:
•  Represent the students classes of the CSE

department in Winter, including the enrollment of
students in classes.

•  Students have pid, first name and last name.
•  Classes have a name, a number, date code (TR,

MW, MWF) and start/end time.
–  Dismiss the possibility of two Winter classes (or class

sections) for the same course
•  A student enrolls for a number of credits in a class.

Solution:…

4

10

Example 1a: E/R-Based Design
Attribute

Enrollment

Credits

Students

PID

FirstName

LastName

Number

DateCode

Start

Classes

Name End

Entity

(2-way many-to-many)
Relationship

11

E/Rè Relational Schema:
 Basic Translation

•  For every entity
–  create corresponding table
– For each attribute of the entity, add a

corresponding attribute in the table
–  Include an ID attribute in the table even if not

in E/R
•  For every many-to-many relationship

–  create corresponding table
– For each attribute of the relationship, add a

corresponding attribute in the table
– For each referenced entity Ei include in the

table a required foreign key attribute
referencing ID of Ei

12

Sample relational database, per
previous page’s algorithm

id pid first_name last_name
1 8888888 John Smith
2 1111111 Mary Doe
3 2222222 null Chen

Students

id name number date_code start_time end_time
1 Web stuff MAS201 TuTh 2:00 3:20
2 Databases CSE132A TuTh 3:30 4:50
4 VLSI CSE121 F null null

Classes

id class student credits
1 1 1 4
2 1 2 3
3 4 3 4
4 1 3 3

Enrollment

5

13

Changed name from “end”
to “end_time” since “end”

is reserved keyword

If we had “ID INTEGER PRIMARY KEY” we
would be responsible for coming up with ID

values. SERIAL leads to a counter that
automatically provides ID values upon

insertion of new tuples

Declaration of schemas in SQL’s Data
Definition Language

CREATE TABLE classes (
 ID SERIAL PRIMARY KEY,
 name TEXT,
 number TEXT,
 date_code TEXT,
 start_time TIME,
 end_time TIME
)
CREATE TABLE students (
 ID SERIAL PRIMARY KEY,
 pid INTEGER,
 first_name TEXT,
 last_name TEXT
)
CREATE TABLE enrollment (
 ID SERIAL,
 class INTEGER REFERENCES classes (ID) NOT NULL,
 student INTEGER REFERENCES students (ID) NOT NULL,
 credits INTEGER
)

Foreign key declaration: Every value of
enrollment.class must also appear as

classes.ID

Declaration of “required” constraint: enrollment.student
cannot be null (notice, it would make no sense to have an

enrollment tuple without a student involved)

14

Example 1b: Using a semantic,
immutable key

Assume that each PID (the id number on UCSD cards)
is unique, not null and immutable (will never change)

Enrollment

Credits

Students

PID

FirstName

LastName

Number

DateCode

Start

Classes

Name End

15

Example 1b: Sample, using the pid
instead of the id to identify students

id pid first_name last_name
1 8888888 John Smith
2 1111111 Mary Doe
3 2222222 null Chen

Students

id name number date_code start_time end_time
1 Web stuff MAS201 TuTh 2:00 3:20
2 Databases CSE132A TuTh 3:30 4:50
4 VLSI CSE121 F null null

Classes

id class student credits
1 1 8888888 4
2 1 1111111 3
3 4 2222222 4
4 1 2222222 3

Enrollment

6

16

Example 1b: Schema revisited, for
using pid for students’ primary key

CREATE TABLE classes (
 ID SERIAL PRIMARY KEY,
 name TEXT,
 number TEXT,
 date_code TEXT,
 start_time TIME,
 end_time TIME
)
CREATE TABLE students (
 ID SERIAL PRIMARY KEY,
 pid INTEGER PRIMARY KEY,
 first_name TEXT,
 last_name TEXT
)
CREATE TABLE enrollment (
 ID SERIAL,
 class INTEGER REFERENCES classes (ID) NOT NULL,
 student INTEGER REFERENCES students (pid) NOT NULL,
 credits INTEGER
)

17

… some easy hands-on experience

•  Install the Postgresql open source database
•  For educational and management purposes use

the pgAdmin client to define schemas, insert
data,

•  For managing and accessing the Postgresql
server, use the pgAdmin graphical client
–  Right click on Postgresql, and select Connect
–  Right click on Databases, and select New Database
–  Enter a new name for the database, and click Okay
–  Highlight the database, and select Tools -> Query
Tool

–  Write SQL code (or open the examples), and select
Query -> Execute

18

Creating a schema and inserting some
data

•  Open file enrollment.sql
•  Copy and paste its CREATE TABLE and INSERT

commands in the Query Tool
•  Run it – you now have the sample database!
•  Run the first 3 SELECT commands to see the

data you have in the database
–  You can run a command by highlighting it with the

cursor and click run

7

19

Movies

Title

Year

Length
StarsIn

Owns

Stars

Name Address

Studios

Name Address

Example 2a

Movies have a title, a year of release and length (in minutes).
Actors have names and address.
Actors appear in movies.
A movie is (co-)owned by studios.
Studios have a name and address.

(2-way many-to-many)
Relationship

(2-way many-to-many)
Relationship

20

CREATE TABLE movies (
 ID SERIAL PRIMARY KEY,
 title TEXT,
 year INTEGER,
 length INTEGER,
)
CREATE TABLE stars (
 ID SERIAL PRIMARY KEY,
 name TEXT,
 address TEXT
)
CREATE TABLE studios (
 ID SERIAL PRIMARY KEY,
 name TEXT,
 address TEXT
)
CREATE TABLE starsin (
 ID SERIAL,
 movie INTEGER REFERENCES movies (ID) NOT NULL,
 star INTEGER REFERENCES stars (ID) NOT NULL
)
CREATE TABLE ownership (
 ID SERIAL,
 movie INTEGER REFERENCES movies (ID) NOT NULL,
 owner INTEGER REFERENCES studios (ID) NOT NULL
)

21

Movies

Title

Year

Length StarsIn

Owns

Stars

Name Address

Studios

Name Address

Example 2b: many-to-at-most-one
relationship
Modification to Example 2a:
A movie is owned by at most one studio.

The movie-studio
relationship is a many-to-
at-most-one relationship.
“Movie” is the “many” side.
“Studio” is the “one” side

(many-to-at-most-one)
Relationship

(many-to-many)
Relationship

8

22

E/Rè Relational: Translation revisited
for many-to-at-most-one relationship

•  For every entity, do the usual…
•  For every many-to-many relationship,

do the usual…

•  For every 2-way many-to-at-most-one
relationship, where
– Em is the “many” side
– Eo is the “one” side (pointed by the arrow)
–  do not create table, instead:

–  In the table corresponding to Em add a (non-
required, i.e., potentially NULL) foreign key
attribute referencing the ID of the table
corresponding to Eo

23

CREATE TABLE movies (
 ID SERIAL PRIMARY KEY,
 title TEXT,
 year INTEGER,
 length INTEGER,
 owner INTEGER REFERENCES studios (ID)
)
CREATE TABLE stars (
 ID SERIAL PRIMARY KEY,
 name TEXT,
 address TEXT
)
CREATE TABLE studios (
 ID SERIAL PRIMARY KEY,
 name TEXT,
 address TEXT
)
CREATE TABLE starsin (
 ID SERIAL,
 movie INTEGER REFERENCES movies (ID) NOT NULL,
 star INTEGER REFERENCES stars (ID) NOT NULL
)

24

Movies

Title

Year

Length

Owns Studios

Name Address

Example 2c: many-to-exactly-one
relationship
Modification to Example 2a:
A movie must be owned by one studio.

The movie-studio
relationship is a many-to-
exactly-one relationship.
“Movie” is the “many” side.
“Studio” is the “one” side

(many-to-exactly-one)
Relationship

CREATE TABLE movies (
 ID SERIAL PRIMARY KEY,
 title TEXT,
 year INTEGER,
 length INTEGER,
 owner INTEGER REFERENCES

 studios (ID) NOT NULL
)

)

9

25

Female

SSN

Age

Name

Couple Male

Name

Age

Example 2d: one-to-one relationship

Consider a database of heterosexual couples
(we neglect homosexual couples, amazons and Warren Jeffs followers)

one-to-one
Relationship

SSN

CREATE TABLE couple (
 husband INTEGER REFERENCES

 females (ID) NOT NULL UNIQUE,
 wife INTEGER REFERENCES

males (ID) NOT NULL UNIQUE
)

26

Example 3: 3-Way Many-to-Many
Relationship

•  A studio has contracted with a particular star to
act in a particular movie
–  No ownership of movies by studios

Movies

Title

Year

Length Stars

Name Address

Studios

Name Address

Fee

Contract

27

CREATE TABLE contract (
 ID SERIAL,
 movie INTEGER REFERENCES movies (ID) NOT NULL,
 star INTEGER REFERENCES stars (ID) NOT NULL,
 owner INTEGER REFERENCES studios (ID) NOT NULL,
 fee INTEGER
)

10

28

Example 4a : Self-Relationships with
Roles

Person

Name email

Following

Follows

Is Followed

Twitter Use Case

29

CREATE TABLE persons (
 ID SERIAL PRIMARY KEY,
 …
)

CREATE TABLE following (
 ID SERIAL,
 follows INTEGER REFERENCES persons (ID) NOT NULL,
 isFollowed INTEGER REFERENCES persons (ID) NOT NULL
)

Notice the use of
roles as attributes

names for the
foreign keys

30

Example 4b : Self-Relationships with
Roles

Movies

Title

Year

Length

SequelOf

Prequel

Sequel

Prequels and Sequels

11

31

CREATE TABLE movies (
 ID SERIAL PRIMARY KEY,
 …
)

CREATE TABLE sequelof (
 ID SERIAL,
 prequel INTEGER REFERENCES movies (ID) NOT NULL,
 sequel INTEGER REFERENCES movies (ID) NOT NULL
)

32

Example 4b : Self-Relationships with
Roles – Questions on Meaning

Movies

Title

Year

Length

SequelOf

Prequel

Sequel

What exactly are the prequel-sequel pairs?

Is “Terminator III: Raise of the Machines” a sequel of
“Terminator” ?

“Terminator II: Judgment Day” is a sequel of “Terminator”

“Terminator III: Raise of the Machines” is a sequel of
 “Terminator II: Judgment Day”

33

Example 4c :
Interpreting sequels non-transitively

Movies

Title

Year

Length

DirectSequel
Of

Prequel

Sequel

A movie has at most one direct “prequel” and at most one direct “sequel”

A lesson about good (OLTP?) database design:
•  Good designs avoid redundancy.
•  No stored piece of data should be inferable from other stored
pieces of data

Modeling movie sequels by “DirectSequelOf” is
preferable in OLTP to using transitive “SequelOf”

Is “Terminator III: Raise of the Machines”
a direct sequel of “Terminator” ? NO

12

34

To be Redundant or Not to be?

NOT
•  Too many Friends-of-Friends

– Even more Friends-of-Friends-of-Friends
–  If “Six Degrees of Separation” is true, the 6-step friends

is not even saying anything

•  A database with derivative data is harder to
maintain

YES
•  Some derivations, interesting to OLAP, are

too expensive to compute live
•  If OLAP, maintenance is not primary concern

35

Self-relationships without roles

User Follows

Followed

Follower

Twitter “followship” is a self-relationship with roles

User Friend

subject

object

Facebook “friendship” is a self-relationship without real roles

36

A case where redundancy may be
welcome

CREATE TABLE friend (
 subject INTEGER REFERENCES user (ID) NOT NULL,
 object INTEGER REFERENCES user (ID) NOT NULL

)

User Friend

subject

object

If Subject is Facebook friend of Object,
 then Object is Facebook friend of Subject.
Is it redundant to explicitly represent both facts in “friend”?
Yes, but makes some queries much easier and faster.

13

Designing Schemas Using
Entity-Relationship modeling

Additional Topics

38

Example 5a: Constraints:
uniqueness; required attributes

Movies

Title

Year

Length StarsIn

Owns

Stars

Name Address

Studios

Name Address

In addition to Example 2b’s assumptions, let us also assume that:
•  title, year, length, star name and studio name are required attributes
 of the respective entities

•  default is that an attribute value may be null
•  studios have unique names, i.e., no two studios may have the same name

R

R

R

R

R

39

Example 5b: Constraints: Required
relationship; cardinality ranges

Movies

Title

Year

Length StarsIn

Owns

Stars

Name Address

Studios

Name Address

In addition to Example 2c’s assumptions, let us also assume that:
•  a movie is owned by exactly one studio

•  so far we had not assumed that the owning studio has to be known (not null)
•  a movie must have at least one actor and no more than 100

R

R

R

R

R

>0
<=100

14

40

SQL Schema for Examples 5a, 5b
CREATE TABLE movies (
 ID SERIAL PRIMARY KEY,
 title TEXT NOT NULL,
 year INTEGER NOT NULL,
 length INTEGER NOT NULL,
 owner INTEGER REFERENCES studios (ID) NOT NULL
)
CREATE TABLE stars (
 ID SERIAL PRIMARY KEY,
 name TEXT NOT NULL,
 address TEXT
)
CREATE TABLE studios (
 ID SERIAL PRIMARY KEY,
 name TEXT NOT NULL UNIQUE,
 address TEXT
)
CREATE TABLE starsin (
 ID SERIAL,
 movie INTEGER REFERENCES movies (ID) NOT NULL,
 star INTEGER REFERENCES stars (ID) NOT NULL
)

41

A sample database

ID title year length owner
1 Forrest Gump 1994 142 2
2 The Godfather 1972 175 2
3 Star Wars 1977 121 1
4 Scent of a Woman 1992 157 3

movies

ID name address
1 Al Pacino New York, NY
2 Harrison Ford Beverly Hills, CA
3 Tom Hanks Santa Monica, CA

stars

ID name address
1 20th Century Fox Century City, CA
2 Paramount Productions Hollywood, CA
3 Universal Pictures Universal City, CA

studios

ID movie star
1 1 3
2 2 1
3 3 2
4 4 1

starsin

42

Why do we want constraints? What
happens when they are violated?

•  Protect the database from erroneous data entry

•  Prevent database states that are inconsistent
with the rules of the business process you want
to capture

•  Whenever you attempt to change (insert, delete,
update) the database in a way that violates a
constraint the database will prevent the change
–  Try it out on the sample databases of the class page

15

43

Some constraints are not implemented
by some SQL database systems

•  Consider the cardinality constraint that a movie
has between 1 and 100 actors.

•  The SQL standard provides a way, named
CHECK constraints, to declare such
–  its specifics will make more sense once we have seen

SQL queries
•  However, no open source database implements

the CHECK constraints.

•  Project Phase I: Introduce such constraints on
your E/R, despite the fact that you will not be
able to translate them to the SQL schema

44

Vice versa: SQL allows some
constraints that are not in plain E/R

Notable cases:
•  Attribute value ranges

–  Example: Declare that the year of movies is after 1900

•  Multi-attribute UNIQUE
–  Example: Declare that the (title, year) attribute value

combination is unique

45

Added constraints of previous slide
CREATE TABLE movies (
 ID SERIAL PRIMARY KEY,
 title TEXT NOT NULL,
 year INTEGER NOT NULL CHECK (year > 1900),
 length INTEGER NOT NULL,
 owner INTEGER REFERENCES studios (ID) NOT NULL,
 UNIQUE (title, year)
)
CREATE TABLE stars (
 ID SERIAL PRIMARY KEY,
 name TEXT NOT NULL,
 address TEXT
)
CREATE TABLE studios (
 ID SERIAL PRIMARY KEY,
 name TEXT NOT NULL UNIQUE,
 address TEXT
)
CREATE TABLE starsin (
 ID SERIAL,
 movie INTEGER REFERENCES movies (ID) NOT NULL,
 star INTEGER REFERENCES stars (ID) NOT NULL
)

16

46

Example 6: tricky flavors of one-to-one
relationships

Studios

Name Address

Assume that a president manages exactly one studio and
a studio may have at most one president.
Notice: a studio may not have a president but
in order to be a president one has to manage a studio.

Presidents

Name Age

Manages

47

1st candidate

CREATE TABLE presidents (
 ID SERIAL PRIMARY KEY,
 name TEXT,
 age INTEGER,
)

CREATE TABLE studios (
 ID SERIAL PRIMARY KEY,
 name TEXT,
 address TEXT
)

CREATE TABLE management (
 manager INTEGER REFERENCES presidents (ID) NOT NULL UNIQUE
 manages INTEGER REFERENCES studios (ID) NOT NULL UNIQUE
)

One may be a president
WITHOUT managing any

studio
=> This design fails to

capture a given constraint

48

2nd candidate

CREATE TABLE presidents (
 ID SERIAL PRIMARY KEY,
 name TEXT,
 age INTEGER,
 manages INTEGER REFERENCES studios (ID) NOT NULL UNIQUE
)

CREATE TABLE studios (
 ID SERIAL PRIMARY KEY,
 name TEXT,
 address TEXT
)

Guarantees that
in order to be
president, one

has to manage a
studio

Guarantees that
no two presidents
may manage the

same studio

17

49

3rd candidate

CREATE TABLE presidents (
 ID SERIAL PRIMARY KEY,
 name TEXT,
 age INTEGER
)

CREATE TABLE studios (
 ID SERIAL PRIMARY KEY,
 name TEXT,
 address TEXT,
 managedBy INTEGER REFERENCES presidents (ID) UNIQUE
)

3rd candidate is also not preferred. Why? What constraint it misses?

50

Example 6: Subclassing

Student

PID Name

Undergrad

IsA

R R

Subject Major

Minor Graduate

Advisor

Faculty

… …

…

…

Degree

MS or PhD

51

Schemas for subclassing:
Candidate 1

CREATE TABLE student(
 ID SERIAL PRIMARY KEY,
 pid TEXT NOT NULL UNIQUE,
 name TEXT NOT NULL,
 major INTEGER REFERENCES subject(ID)

)
CREATE TABLE undergrad(

 studentid INTEGER REFERENCES student(ID) NOT NULL,
 minor INTEGER REFERENCES subject(ID)

)
CREATE TABLE graduate(

 studentid INTEGER REFERENCES student(ID) NOT NULL,
 degree TEXT NOT NULL CHECK (degree=“PhD” OR degree=“MS”),
 advisor INTEGER REFERENCES faculty(ID) NOT NULL

)
CREATE TABLE subject(

 ID SERIAL PRIMARY KEY,
 …

)
CREATE TABLE faculty(

 ID SERIAL PRIMARY KEY,
 …

)

+ captures constraints
-  Information about graduates is
spread on two tables
-  Creating a report about students is
a tricky query
To appreciate the above wait till we
discuss SQL

18

52

Schemas for subclassing:
Candidate 2

CREATE TABLE student(
 ID SERIAL PRIMARY KEY,
 pid TEXT NOT NULL UNIQUE,
 name TEXT NOT NULL,
 kind CHAR(1) CHECK (kind=‘U’ OR kind=‘G’),
 major INTEGER REFERENCES subject(ID),
 minor INTEGER REFERENCES subject(ID),
 degree TEXT CHECK (degree=“PhD” OR degree=“MS”),
 advisor INTEGER REFERENCES faculty(ID)

)
CREATE TABLE subject(

 ID SERIAL PRIMARY KEY,
 …

)
CREATE TABLE faculty(

 ID SERIAL PRIMARY KEY,
 …

)

- misses constraints
E.g., notice that it does not capture
that a graduate student must have
an advisor since we had to make the
advisor attribute non-required in
order to accommodate having
undergraduates in the same table

53

Not covered E/R features

•  Weak entities
–  double-lined entities and relationships

•  Many-to-Many-to-One 3-way (or more)
relationships

•  Necessary participation of entity in relationship
•  … more

Programming on Databases with
SQL

19

55

Writing programs on databases: JDBC

•  How client opens connection with a server
•  How access & modification commands are issued
•  …

App Server

Web Application
(jsp, servlet…)

RDBMS
JDBC Client

Relations,
cursors,
other…

JDBC
SQL commands

RDBMS
Server

Relational
Database

pgAdmin
(desktop client)

56

… some easy hands-on experience

•  Install the Postgresql open source database
•  For educational and management purposes use

the pgAdmin client to define schemas, insert
data,
–  See online instructions

•  For managing and accessing the Postgresql
server, use the pgAdmin graphical client
–  Right click on Postgresql, and select Connect
–  Right click on Databases, and select New Database
–  Enter a new name for the database, and click Okay
–  Highlight the database, and select Tools -> Query
Tool

–  Write SQL code (or open the examples), and select
Query -> Execute

57

Creating a schema and inserting some
data

•  Open file enrollment.sql
•  Copy and paste its CREATE TABLE and INSERT

commands in the Query Tool
•  Run it – you now have the sample database!
•  Run the first 3 SELECT commands to see the

data you have in the database

20

58

Access (Query) & Modification
Language: SQL

•  SQL
–  used by the database user
–  declarative:we only describe what we want to

retrieve
–  based on tuple relational calculus

•  The result of a query is a table
•  Internal Equivalent of SQL: Relational Algebra

–  used internally by the database system
–  procedural (operational): describes how query is

executed
•  The solutions to the following examples are on

the class page download

59

SQL: Basic, single-table queries

•  Basic form
SELECT r.A1,…,r.AN

 FROM R r
 WHERE <condition>
•  WHERE clause is optional
•  Have tuple variable r

range over the tuples of
R, qualify the ones that
satisfy the (boolean)
condition and return the
attributes A1,…,AN

Find first names and last names
of all students
SELECT s.first_name, s.last_name
FROM students s;

Display all columns of all
students whose first name is
John; project all attributes

SELECT s.id, s.pid, s.first_name,

 s.last_name
FROM students s
WHERE s.first_name = ‘John’

… and its shorthand form

SELECT *
FROM students s
WHERE s.first_name = 'John';

60

SQL Queries:
Joining together multiple tables

•  Basic form
SELECT …,ri.Aj,…

 FROM R1 r1,…,RM rM
 WHERE <condition>

•  When more than one
relations in the FROM
clause have an attribute
named A, we refer to a
specific A attribute as
<RelationName>.A

•  Hardest to get used to,
yet most important
feature of SQL

Produce a table that shows
the pid, first name and last
name of every student
enrolled in the class with ID
1, along with the number of
credit units in the “class 1”
enrollment

SELECT s.pid, s.first_name,
 s.last_name, e.credits

FROM students s, enrollment e
WHERE s.id = e.student

 AND e.class = 1 ;

21

61

(repeat)

id pid first_name last_name
1 8888888 John Smith
2 1111111 Mary Doe
3 2222222 null Chen

Students

id name number date_code start_time end_time
1 Web stuff MAS201 TuTh 2:00 3:20
2 Databases CSE132A TuTh 3:30 4:50
4 VLSI CSE121 F null null

Classes

id class student credits
1 1 1 4
2 1 2 3
3 4 3 4
4 1 3 3

Enrollment

62

Take One: Understanding FROM as
producing all combinations of tuples
from the tables of the FROM clause

SELECT s.pid, s.first_name, s.last_name, e.credits
FROM students s, enrollment e
WHERE s.id = e.student AND e.class = 1

“FROM” produces all 12 tuples made from one “students” tuple and one “enrollment” tuple

s.id s.pid s.first_name s.last_name e.id e.class e.student e.credits
1 88.. John Smith 1 1 1 4
1 88.. John Smith 2 1 2 3
1 88.. John Smith 3 4 3 4
1 88.. John Smith 4 1 3 3
2 11.. Mary Doe 1 1 1 4
2 11.. Mary Doe 2 1 2 3
2 11.. Mary Doe 3 4 3 4
2 11.. Mary Doe 4 1 3 3
3 22.. null Chen 1 1 1 4
3 22.. null Chen 2 1 2 3
3 22.. null Chen 3 4 3 4
3 22.. null Chen 4 1 3 3

Student s part of the tuple Enrollment e part of the tuple

63

Take One: or understanding FROM as nested
loops (producing all combinations)

SELECT s.pid, s.first_name, s.last_name, e.credits
FROM students s, enrollment e
WHERE s.id = e.student AND e.class = 1 ;

s.id s.pid s.first_name s.last_name e.id e.class e.student e.credits
1 88.. John Smith 1 1 1 4
1 88.. John Smith 2 1 2 3
1 88.. John Smith 3 4 3 4
1 88.. John Smith 4 1 3 3
2 11.. Mary Doe 1 1 1 4
2 11.. Mary Doe 2 1 2 3
2 11.. Mary Doe 3 4 3 4
2 11.. Mary Doe 4 1 3 3
3 22.. null Chen 1 1 1 4
3 22.. null Chen 2 1 2 3
3 22.. null Chen 3 4 3 4
3 22.. null Chen 4 1 3 3

Student part of the tuple Enrollment part of the tuple

for s ranging over students tuples
 for e ranging over enrollment tuples
 output a tuple with all s attributes and e attributes

22

64

The order in FROM clause is
unimportant

•  FROM students s, enrollment e

•  FROM enrollment e, students s

produce the same combinations (pairs) of student
+ enrollment

65

… with shorter column names

“FROM” produces all 12 tuples made from one “students” tuple and one “enrollment” tuple

s.id pid first_name last_name e.id class student credits
1 88.. John Smith 1 1 1 4
1 88.. John Smith 2 1 2 3
1 88.. John Smith 3 4 3 4
1 88.. John Smith 4 1 3 3
2 11.. Mary Doe 1 1 1 4
2 11.. Mary Doe 2 1 2 3
2 11.. Mary Doe 3 4 3 4
2 11.. Mary Doe 4 1 3 3
3 22.. null Chen 1 1 1 4
3 22.. null Chen 2 1 2 3
3 22.. null Chen 3 4 3 4
3 22.. null Chen 4 1 3 3

Student part of the tuple Enrollment part of the tuple

SELECT s.pid, s.first_name, s.last_name, e.credits
FROM students s, enrollment e
WHERE s.id = e.student AND e.class = 1 ;

66

s.id s.pid s.first_name s.last_name e.id e.class e.student e.credits
1 88.. John Smith 1 1 1 4
1 88.. John Smith 2 1 2 3
1 88.. John Smith 3 4 3 4
1 88.. John Smith 4 1 3 3
2 11.. Mary Doe 1 1 1 4
2 11.. Mary Doe 2 1 2 3
2 11.. Mary Doe 3 4 3 4
2 11.. Mary Doe 4 1 3 3
3 22.. null Chen 1 1 1 4
3 22.. null Chen 2 1 2 3
3 22.. null Chen 3 4 3 4
3 22.. null Chen 4 1 3 3

Understanding WHERE as qualifying
the tuples that satisfy the condition

SELECT s.pid, s.first_name, s.last_name, e.credits
FROM students s, enrollment e
WHERE s.id = e.student AND e.class = 1 ;

23

67

Understanding SELECT as keeping the
listed columns (highlighted below)

Students.
id

pid first_name last_name Enrollment.
id

class student credits

1 88.. John Smith 1 1 1 4
1 88.. John Smith 2 1 2 3
1 88.. John Smith 3 4 3 4
1 88.. John Smith 4 1 3 3
2 11.. Mary Doe 1 1 1 4
2 11.. Mary Doe 2 1 2 3
2 11.. Mary Doe 3 4 3 4
2 11.. Mary Doe 4 1 3 3
3 22.. null Chen 1 1 1 4
3 22.. null Chen 2 1 2 3
3 22.. null Chen 3 4 3 4
3 22.. null Chen 4 1 3 3

Students
.pid

Students.first_name Students.last_name Enrollment.credits

88.. John Smith 4
11.. Mary Doe 3
22.. null Chen 3

SELECT s.pid, s.first_name, s.last_name, e.credits

68

Take Two on the previous exercises:
The algebraic way
Produce a table that shows the pid, first name and last name of
every student enrolled in the class with ID 1, along with the
number of credit units in the “class 1” enrollment

SELECT s.pid, s.first_name, s.last_name, e.credits
FROM students s JOIN enrollment e

 ON s.id = e.student
WHERE e.class = 1 ;

69

Take two cont’d

s.id pid first_name last_name e.id class student credits
1 88.. John Smith 1 1 1 4
2 11.. Mary Doe 2 1 2 3
3 22.. null Chen 3 4 3 4
3 22.. null Chen 4 1 3 3

Student part of the tuple Enrollment part of the tuple
FROM clause result

WHERE clause result

s.id pid first_name last_name e.id class student credits
1 88.. John Smith 1 1 1 4
2 11.. Mary Doe 2 1 2 3
3 22.. null Chen 3 4 3 4
3 22.. null Chen 4 1 3 3

Net result of the query is

s.pid first_name last_name credits
88.. John Smith 4
11.. Mary Doe 3
22.. null Chen 3

24

70

Heuristics on writing queries

•  Do you understand how queries work but have
difficulty writing these queries yourself?

•  The following heuristics will help you translate a
requirement expressed in English into a query
–  The key point is to translate informal English into a

precise English statement about which tuples your
query should find in the database

71

Hints for writing FROM/WHERE: Rephrase the statement, see it
as a navigation across primary/foreign keys

•  Find every enrollment tuple e
•  that is an enrollment in class 1

•  i.e., e.class = 1
•  and find the student tuple s that is connected to e

•  i.e., the student’s id s.id appears in the
 enrollment tuple e as the foreign key
 e.student

•  display the pid, first_name, last_name of s and
 the credits of e

id pid first_name last_name
1 8888888 John Smith
…

Students

id class student credits
1 1 1 4
…

Enrollment

Produce a table that shows the pid, first name and last name of every student enrolled
in class 1, along with the number of credit units in his/her class 1 enrollment

s

e

s.id = e.student

72

•  Find every enrollment tuple e
•  that is an enrollment in class 1

•  i.e., e.class = 1
•  and find the student tuple s that is connected to e

•  i.e., the student’s id s.id appears in the enrollment tuple
 e as the foreign key e.student

•  display the pid, first_name, last_name of s and the
 credits of e

FROM enrollment e

•  Find every enrollment tuple e
•  that is an enrollment in class 1

•  i.e., e.class = 1
•  and find the student tuple s that is connected to e

•  i.e., the student’s id s.id appears in the enrollment tuple
 e as the foreign key e.student

•  display the pid, first_name, last_name of s and the
 credits of e

FROM enrollment e
WHERE e.class = 1

25

73

•  Find every enrollment tuple e
•  that is an enrollment in class 1

•  i.e., e.class = 1
•  and find the student tuple s that is connected to e

•  i.e., the student’s id s.id appears in the enrollment
 tuple e as the foreign key e.student

•  display the pid, first_name, last_name of s and the
 credits of e

FROM enrollment e, students s
WHERE e.class = 1

 AND e.student = s.id

FROM enrollment e
 JOIN students s
 ON e.student = s.id

WHERE e.class = 1

•  Find every enrollment tuple e
•  that is an enrollment in class 1

•  i.e., e.class = 1
•  and find the student tuple s that is connected to e

•  i.e., the student’s id s.id appears in the
 enrollment tuple e as the foreign key e.student

•  display the pid, first_name, last_name of s and
 the credits of e

SELECT s.pid, s.first_name, s.last_name
 e.credits

FROM enrollment e, students s
WHERE e.class = 1

 AND e.student = s.id

SELECT s.pid, s.first_name, s.last_name
 e.credits

FROM enrollment e
 JOIN students s
 ON e.student = s.id

WHERE e.class = 1

We could have also said “and find every student
tuple s that is connected” but we used our

knowledge that there is exactly one connected
student and instead said “the student”

74

SQL Queries: Nesting

•  The WHERE clause can contain
predicates of the form
–  attr/value IN <query>
–  attr/value NOT IN <query>
–  attr/value = <query>

•  The predicate is satisfied if the
attr or value appears in the
result of the nested <query>

•  Also
–  EXISTS <query>
–  NOT EXISTS <query>

75

Nesting: Break the task into smaller

SELECT s.pid, s.first_name, s.last_name, e.credits
FROM students s, enrollment e
WHERE e.class = (SELECT c.id

 FROM classes c
 WHERE c.number = ‘MAS201’
)

 AND s.id = e.student

{[id:1]} -> 1

Produce a table that shows the pid, first name and last name of every
student enrolled in the class named `MAS201’, along with the
number of credit units in his/her `MAS201’ enrollment
Note: We assume that there are no two classes with the same name

Nested queries modularize the task:
Nested query finds the id of the MAS201
class.
Then the outer query behaves as if there
were a “1” in lieu of the subquery

26

76

IN

SELECT s.pid, s.first_name, s.last_name, e.credits
FROM students s, enrollment e
WHERE e.class IN (SELECT c.id

 FROM classes c
 WHERE c.number = ‘MAS201’
)

 AND s.id = e.student

{[id:1]}

Produce a table that shows the pid, first name and last name of every
student enrolled in the class named `MAS201’, along with the
number of credit units in his/her `MAS201’ enrollment
Note: We assume that there are no two classes with the same name

77

Students + enrollments in class 1
Vs Students who enrolled in class 1

SELECT s.pid, s.first_name,
 s.last_name, e.credits

FROM students s, enrollment e
WHERE s.id = e.student

 AND e.class = 1

SELECT s.pid, s.first_name,
 s.last_name

FROM students s
WHERE s.id IN (SELECT e.student

 FROM enrollment e
 WHERE e.class = 1
)

Imagine a weird university where a student is allowed
to enroll multiple times in the same class

Produce a table that shows
the pid, first name and last
name of every student
enrolled in the class with ID
1, along with the number of
credit units in the “class 1”
enrollment
=> The same student may
appear many times, once for
each enrollment

Produce a table that shows
the pid, first name and la st
name of every student who
has enrolled at least once in
the “class 1”.
=> Each student will appear
at most once

78

Uncorrelated subquery

SELECT s.pid, s.first_name,
 s.last_name

FROM students s
WHERE s.id IN (SELECT e.student

 FROM enrollment e
 WHERE e.class = 1
)

“Uncorrelated” in the sense
that the nested query
could be a standalone

query

Some nested queries are
correlated (example later)

27

79

EXISTS

SELECT s.pid, s.first_name, s.last_name
FROM students s
WHERE s.id IN (SELECT e.student

 FROM enrollment e
 WHERE e.class = 1
)

 AND EXISTS (SELECT *
 FROM enrollment e
 WHERE e.class = 2
)

Display the students enrolled in class 1,
only if the enrollment of class 2 is not empty

Uncorrelated, also

80

Correlated with EXISTS

SELECT s.pid, s.first_name, s.last_name
FROM students s
WHERE EXISTS (SELECT e.student

 FROM enrollment e
 WHERE e.class = 1
 AND e.student = s.id)

Display the students enrolled in class 1

Correlation: the
variable s comes from

the outer query

81

Exercise, on thinking cardinalities of
tuples in the results
SELECT s.pid, s.first_name, s.last_name, e.credits
FROM students s, enrollment e
WHERE e.class IN (SELECT c.id

 FROM classes c
 WHERE c.number = ‘MAS201’
)

 AND s.id = e.student

EXERCISE: Under what condition does the above query always
produce the same result with the query below?

SELECT s.pid, s.first_name, s.last_name, e.credits
FROM students s, enrollment e, classes c
WHERE c.number = 'MAS201'
 AND s.id = e.student
 AND e.class = c.id

28

82

Exercise: Multiple JOINs

Take One:
SELECT s.pid, s.first_name, s.last_name, e.credits
FROM students s, enrollment e, classes c
WHERE c.number = 'MAS201' AND s.id = e.student AND e.class = c.id

Produce a table that shows the pid, first name and last name of
every student enrolled in the MAS201 class along with the
number of credit units in his/her 135 enrollment

Take Two:
SELECT s.pid, s.first_name, s.last_name, e.credits
FROM (students s JOIN enrollment e ON s.id = e.student)
 JOIN classes c ON e.class = c.id
WHERE c.number = 'MAS201'

83

You can omit table names in SELECT,
WHERE when attribute is unambiguous

SELECT pid, first_name, last_name, credits
FROM students, enrollment, classes
WHERE number = 'MAS201'
 AND students.id = student
 AND class = classes.id ;

84

SQL Queries, Aliases

•  Use the same relation more than once in the
same query or even the same FROM clause

•  Problem: Find the Friday classes taken by
students who take MAS201
–  also showing the students, i.e., produce a table where

each row has the data of a MAS201 student and a
Friday class he/she takes

29

85

Find the MAS201 students who take a Friday 11:00 am class

SELECT s.id, s.first_name, s.last_name, cF.number
FROM students s, enrollment eF, classes cF
WHERE date_code = 'F'
 AND eF.class = cF.id
 AND s.id = eF.student
 AND s.id IN
 (
 SELECT student
 FROM enrollment e201, classes c201
 WHERE c201.id = e201.class
 AND c201.number = 'MAS201'

)

Nested query
computes the id’s of
students enrolled in

MAS201

86

Multiple aliases may appear in the
same FROM clause
Find the MAS201 students who take a Friday 11:00 am class

SELECT s.first_name, s.last_name, cF.number
FROM students s, enrollment eF, classes cF,

 enrollment e201, classes c201
WHERE cF.date_code = 'F'
 AND eF.class = cF.id
 AND s.id = eF.student
 AND s.id = e201.student
 AND c201.id = e201.class
 AND c201.number = 'MAS201‘

Under what conditions
it computes the same
result with previous

page?

87

DISTINCT
Find the other classes taken by MAS201 students

(I don’t care which students)

SELECT DISTINCT cOther.number
FROM enrollment eOther, classes cOther,

 enrollment e201, classes c201
WHERE eOther.class = cOther.id
 AND eOther.student = e201.student
 AND c201.id = e201.class
 AND c201.number = 'MAS201‘

30

88

UNION ALL

Find all student ids for students who have taken class 1 or
are named ‘John’

(SELECT e.student
 FROM enrollment e
 WHERE e.class=1)
UNION ALL
(SELECT s.id AS student
 FROM student s
 WHERE s.first_name=‘John’
)

If a student named
John takes class 1

he will appear twice
in the result

89

UNION with non –duplicate results

(SELECT e.student
 FROM enrollment e
 WHERE e.class=1)
UNION
(SELECT s.id AS student
 FROM student s
 WHERE s.first_name=‘John’
)

90

SQL Queries: Aggregation & Grouping

•  Aggregate functions:
SUM,AVG, COUNT, MIN,
MAX, and recently user
defined functions as well

•  GROUP BY

Name Dept Salary
Joe Toys 45
Nick PCs 50
Jim Toys 35
Jack PCs 40

Employee

Example: Find the average salary of
all employees:

SELECT AVG(Salary) AS AvgSal
FROM Employee

AvgSal
42.5

Example: Find the average salary for
each department:

SELECT Dept, AVG(Salary) AS AvgSal
FROM Employee
GROUP BY Dept

Dept AvgSal
Toys 40
PCs 45

31

91

SQL Grouping:
 Conditions that Apply on Groups

•  HAVING <condition> may follow a GROUP BYclause
•  If so, the condition applies to each group, and

groups not satisfying the condition are eliminated

•  Example: Find the average salary in each
department that has more than 1 employee:

 SELECT Dept,AVG(Salary) AS AvgSal
 FROM Employee
 GROUP BY Dept
 HAVING COUNT(Name) >1

92

Let’s mix features we’ve seen:
Aggregation after joining tables

•  Problem: List all enrolled students and the
number of total credits for which they have
registered

SELECT students.id, first_name, last_name, SUM(credits)
FROM students, enrollment
WHERE students.id = enrollment.student
GROUP BY students.id, first_name, last_name

93

ORDER BY and LIMIT

Order the student id’s of class 2 students according to their class 2 credits,
descending

SELECT e.student
FROM enrollment e
WHERE e.class = 2
ORDER BY e.credits DESC

Order the student id’s of class 2 students according to their class 2 credits,
descending and display the Top 10

SELECT e.student
FROM enrollment e
WHERE e.class = 2
ORDER BY e.credits DESC
LIMIT 10

32

94

Combining features

Find the Top-5 classes taken by students of class 2,
i.e., the 5 classes (excluding class 2 itself)
with the highest enrollment of class 2 students,
display their numbers and how many class 2 students they have

SELECT cF.number, COUNT(*)
FROM enrollment eF, classes cF
WHERE eF.class = cF.id
 AND NOT(eF.class = 2)
 AND eF.student IN
 (
 SELECT student
 FROM enrollment e2
 WHERE e201.class = 2

)
GROUP BY cF.id, cF.number
ORDER BY cF.number
LIMIT 5

Grouping by both id and
number ensures

correctness even if
multiple classes have the

same number

95

The outerjoin operator

•  New construct in FROM
clause

•  R LEFT OUTER JOIN S ON
R.<attr of R>=S.<attr of J>

•  R FULL OUTER JOIN S ON
R.<attr of R>=S.<attr of J>

RJ RV
1 RV1
2 RV2

R
SJ SV
1 SV1
3 SV3

S

RJ RV SJ SV
1 RV1 1 SV1
2 RV2 Null Null

SELECT *
FROM R LEFT OUTERJOIN S ON R.RJ=S.SJ

RJ RV SJ SV
1 RV1 1 SV1
2 RV2 Null Null
Null Null 3 SV3

SELECT *
FROM R FULL OUTERJOIN S ON R.RJ=S.SJ

96

An application of outerjoin

•  Problem: List all students and the number of
total credits for which they have registered
–  Notice that you must also list non-enrolled students

SELECT students.id, first_name, last_name, SUM(credits)
FROM students LEFT OUTER JOIN enrollment ON

students.id = enrollment.student
GROUP BY students.id, first_name, last_name

33

97

SQL: More Bells and Whistles …

•  Pattern matching
conditions
–  <attr> LIKE <pattern>

Retrieve all students whose
name contains “Sm”

SELECT *
FROM Students
WHERE name LIKE ‘%Sm%’

98

…and a Few “Dirty” Points

•  Null values
–  All comparisons involving NULL are false by definition
–  All aggregation operations, except COUNT(*), ignore

NULL values

99

Null Values and Aggregates

•  Example:

 SELECT COUNT(a),COUNT(b),AVG(b), COUNT(*)
FROM R
GROUP BY a

a b
x 1
x 2
x null

null null
null null

R

count(a) count(b) avg(b) count(*)
3 2 1.5 3
0 0 null 2

34

100

Universal Quantification by Negation
(difficult)

Problem:
•  Find the students that take every class ‘John

Smith’ takes
Rephrase:
•  Find the students such that there is no class that

‘John Smith’ takes and they do not take

101

Hints for writing FROM/WHERE: Rephrase the statement, see it
as a navigation across primary/foreign keys

•  Find every combination of a students tuple s, an
enrollment tuple e, c where
•  the students tuple s,
•  is connected to the enrollment tuple e

•  i.e., the s.id appears in the enrollment tuple e
 as e.student,

•  and e is connected to the classes tuple c
•  i.e., the e.class of e appears as c.id of the

 tuple c,
•  whose c.number is MAS201

id pid first_name last_name
1 8888888 John Smith
…

Students

id name number date_code start_time end_time
1 Web stuff MAS201 TuTh 2:00 3:20
…

Classes

id class student credits
1 1 1 4
…

Enrollment

Produce a table that shows the pid,
first name and last name of every
student enrolled in the MAS201
class along with the number of
credit units in his/her 135
enrollment

s

e

s.id = e.student

c

c.id = e.class

102

FROM students AS s •  Find any students tuple s,
•  that is connected to an enrollment tuple e

•  i.e., whose s.id appears in an enrollment tuple e
 as e.student,

•  and e is connected to a classes tuple c
•  i.e., the e.class of e appears as c.id of the

 tuple c,
•  whose c.number is MAS201

•  Find any students tuple s,
•  that is connected to an enrollment tuple e

•  i.e., whose s.id appears in an enrollment tuple e
 as e.student,

•  and e is connected to a classes tuple c
•  i.e., the e.class of e appears as c.id of the

 tuple c,
•  whose c.number is MAS201

FROM students AS s,
 enrollment AS e

WHERE s.id = e.student

Take One: Declarative

FROM students AS s
 JOIN enrollment AS e
 ON s.id = e.student

Take Two: Algebraic

35

103

•  Find any students tuple s,
•  that is connected to an enrollment tuple e

•  i.e., whose s.id appears in an enrollment tuple e
 as e.student,

•  and e is connected to a classes tuple c
•  i.e., the e.class of e appears as c.id of the

 tuple c,
•  whose c.number is MAS201

FROM students AS s,
 enrollment AS e,
 classes AS c

WHERE s.id = e.student
 AND c.id = e.class

Take One: Declarative
FROM (students AS s

 JOIN enrollment AS e
 ON s.id = e.student)
 JOIN classes AS c
 ON c.id = e.class

Take Two: Algebraic

104

•  Find any students tuple s,
•  that is connected to an enrollment tuple e

•  i.e., whose s.id appears in an enrollment tuple e
 as e.student,

•  and e is connected to a classes tuple c
•  i.e., the e.class of e appears as c.id of the

 tuple c,
•  whose c.number is MAS201

FROM students AS s,
 enrollment AS e,
 classes AS c

WHERE s.id = e.student
 AND c.id = e.class
 AND c.number = ‘MAS201’

Take One: Declarative
FROM (students AS s

 JOIN enrollment AS e
 ON s.id = e.student)
 JOIN classes AS c
 ON c.id = e.class

WHERE c.number = ‘MAS201’

Take Two: Algebraic

105

FROM students AS s •  Find any students tuple s,
•  that is connected to an enrollment tuple e

•  i.e., whose s.id appears in an enrollment tuple e
 as e.student,

•  and e is connected to a classes tuple c
•  i.e., the e.class of e appears as c.id of the

 tuple c,
•  whose c.number is MAS201

•  Find any students tuple s,
•  that is connected to an enrollment tuple e

•  i.e., whose s.id appears in an enrollment tuple e
 as e.student,

•  and e is connected to a classes tuple c
•  i.e., the e.class of e appears as c.id of the

 tuple c,
•  whose c.number is MAS201

FROM students AS s,
 enrollment AS e

WHERE s.id = e.student

Take One: Declarative

FROM students AS s,
 JOIN enrollment AS e
 ON s.id = e.student

Take Two: Algebraic

36

106

Breaking a query into pieces with
WITH

Find the 5 classes whose students have the busiest courseload, i.e.,
the 5 classes whose students have the highest average of quarter credits

WITH courseload AS
(SELECT e.student, SUM(credits) AS total_credits
 FROM enrollment e
 GROUP BY e.student)
SELECT e.class, AVG(c.total_credits)
FROM enrollment e, courseload c
WHERE e.student = c.student
GROUP BY e.class
ORDER BY AVG(c.total_credits) DESC
LIMIT 5

Defines a table
“courseload” that lives for
the duration of this query

only

107

Avoid repeating aggregates

WITH courseload AS
(SELECT e.student, SUM(credits) AS total_credits
 FROM enrollment e
 GROUP BY e.student)
SELECT e.class, AVG(c.total_credits)
FROM enrollment e, courseload c
WHERE e.student = c.student
GROUP BY e.class
ORDER BY AVG(c.total_credits) DESC
LIMIT 5
 WITH courseload AS

(SELECT e.student, SUM(credits) AS total_credits
 FROM enrollment e
 GROUP BY e.student)
SELECT e.class, AVG(c.total_credits) AS credits_avg
FROM enrollment e, courseload c
WHERE e.student = c.student
GROUP BY e.class
ORDER BY credits_avg DESC
LIMIT 5

Equivalent

108

Breaking a query into pieces with
nesting in the FROM clause

Find the 5 classes whose students have the busiest courseload, i.e.,
the 5 classes whose students have the highest average of quarter credits

SELECT e.class, AVG(c.total_credits) AS credits_avg
FROM enrollment e,
 (SELECT e.student, SUM(credits) AS total_credits
 FROM enrollment e
 GROUP BY e.student) c
WHERE e.student = c.student
GROUP BY e.class
ORDER BY credits_avg DESC
LIMIT 5

Also defines a table,
identical to the

“courseload” except it has
no name

37

109

and nesting in the SELECT clause

SELECT e.class, AVG(
 (SELECT SUM(es.credits)
 FROM enrollment es
 WHERE es.student = e.student)
) AS credits_avg

FROM enrollment e
GROUP BY e.class
ORDER BY credits_avg DESC
LIMIT 5

Find the 5 classes whose students have the busiest courseload, i.e.,
the 5 classes whose students have the highest average of quarter credits

110

Discussed in class and discussion
section

How to solve in easy steps the following complex query:

Create a table that shows all time slots (date, start time, end time)
when students of MAS201 attend a lecture of another class;

Show also how many students attend a class at each time slot.

111

SQL as a Data Manipulation Language:
Insertions

•  Inserting tuples
 INSERT INTO R(A1,…,Ak)
VALUES (v1,…,vk);

•  Some values may be left
NULL

•  Use results of queries for
insertion

INSERT INTO R
SELECT …
FROM …
WHERE …

•  Insert in Students ‘John Doe’
with A# 99999999

 INSERT INTO students
 (pid, first_name, last_name)
 VALUES
 (‘9999999’, ‘John’, ‘Doe’)

•  Enroll all MAS201 students into

CSE132A
INSERT INTO enrollment (class,

student)
SELECT c132a.id, student
FROM classes AS c135, enrollment,

classes AS c132a
WHERE c135.number='MAS201‘ AND

enrollment.class=c135.id AND
c132a.number='CSE132A'

38

112

SQL as a Data Manipulation Language:
Updates and Deletions

•  Deletion basic form: delete
every tuple that satisfies
<cond>:

 DELETE FROM R
WHERE <cond>

•  Update basic form: update
every tuple that satisfies
<cond> in the way specified
by the SET clause:

 UPDATE R
 SET A1=<exp1>,…,Ak=<expk>
 WHERE<cond>

•  Delete “John” “Smith”
•  DELETE FROM students

WHERE
first_name='John' AND
last_name='Smith'

•  Update the registered
credits of all MAS201
students to 5

UPDATE enrollment
SET credits=5
WHERE class=1
UPDATE enrollment
SET credits=5
WHERE class IN
(SELECT id FROM classes

WHERE number='MAS201')

