
1

1

Warehouses & Virtual Databases offer
Integrated & Added-Value Views

Client Client

Integrated
View

Source Source Source

Query & Analysis

Integration

Metadata

Mediator

2

Focus: Sources are relational DBs. Integration specified by
distributed view definition(s). Clients issue queries on views.

Client Client

Integrated
View(s)

DB DB DB

View Definition(s)

3

db1 db2

RJ A
B ..

R
TJ C D ..

T
SJ E F ..

S

Mediator

DEFINE VIEW V AS SELECT *
FROM db1.R r, db2.S s, db1.T t
WHERE r.RJ = s.SJ AND s.SJ = t.TJ

RJ A B .. TJ C D .. SJ E B ..

V

Client

SELECT * FROM V
WHERE A > C

2

Mediator

4

Virtual View -> Mediator is a Distributed Query Processor
Materialized view (warehouse) -> Mediator actually stores

integrated view

Client Client

Integrated
View(s)

DB DB DB

View Definition(s)

Mediator

5

Distributed Query Processing in Mediators

Virtual
View(s)

DB DB DB

View Definition(s)

Query Result

Query(ies)

result

Distributed Query processing

6

S

T

db1.R db2.S db1.T

σ RJ = SJ = TJ

V

σ A>C

V

σA>C

σA>C

R

db1 db2
Translate subplans to SQL

+ How will the join happen?

- What if the source offers multiple
 data services instead of JDBC access?

x

db1.R db2.S db1.T

σ RJ = SJ = TJ

x

RJ = TJ

RJ = SJ

3

Distributed Join Types
●  Mediator-based Join

◆  Ship results of queries at mediator

●  Parameterized Join
◆  Right subquery is enhanced with selection on join attribute
◆  For each join value of left hand side, execute another right

subquery

●  Data Ship Join
◆  Insert the result of left hand side (lhs) in the db of right hand

side (rhs).
◆  Execute join at db of right hand side

●  Semijoin Reduction Join
◆  Send rhs parameters to lhs
◆  (Data ship alike variation) Lhs sends to rhs the semijoin of its

subquery with the parameters set.
◆  Execute join at db of rhs
◆  Also, variation that looks like mediator-based join 7

Virtual Views Vs Materialized Views

8

CREATE VIEW V AS
SELECT G, SUM(A) AS S
FROM R
GROUP BY G Vi

ew
 k

in
d CREATE MATERIALIZED VIEW V AS

SELECT G, SUM(A) AS S
FROM R
GROUP BY G

U
po

n
U

pd
at

in
g

R

Database
 does nothing

(Ideally) Database
 must refresh V
to reflect changes on R

U
po

n
Q

ue
ry

in
g

V

SELECT *
FROM V
WHERE G = 5

Optimize
& run

σ G=5
γ G;SUM(A)->S

R

σ G=5

V

Recompute Vs Incremental (Materialized
View) Maintenance – Informal Example

9

CREATE MATERIALIZED VIEW V AS
SELECT G, SUM(A) AS S
FROM R
GROUP BY G

(start)
 INSERT INTO R (…);
 …
 INSERT INTO R (…);
 …
 INSERT INTO R (…);
commit

At the end of the transaction,
we want V to reflect the new state of R
Option 1: Delete and Recompute V
Option 2: Incrementally maintain V

!R+ : the set of tuples inserted in R
 (obtained by log or other mechanism)
UPDATE V
SET S = S +
 (SELECT SUM(A)
 FROM !R+
 WHERE !R+ .G = V. G)
WHERE V.G IN (SELECT G FROM !R+);
INSERT INTO V
 (SELECT G, SUM(A) AS S FROM !R+

 WHERE NOT G IN (SELECT G FROM V)
 GROUP BY G);

 DELETE FROM V
 WHERE true;
 INSERT INTO V
 (SELECT G, SUM(A) AS S
 FROM R
 GROUP BY G);

4

Capturing IVM as computation of !V+ , !V-

•  ignore (just for simplicity)
 update commands

•  think of update as
 delete – insert combo

•  input is !R+ , !R-
•  compute “tuples to be deleted
 from the view” !V-
•  compute “tuples to be inserted
 in the view” !V+

•  delete !V- from V, insert !V+ in V

CREATE MATERIALIZED
 VIEW V AS
SELECT G, SUM(A) AS S
FROM R
GROUP BY G

WITH RGplus AS
(SELECT G, SUM(A) AS S
 FROM rR+ GROUP BY G),
RGminus AS
 (SELECT G, SUM(A) AS S
 FROM rR - GROUP BY G),
RGnet AS
 (SELECT choose(p.G, m.G) AS G,
 n0(p.S) – n0(m.S) AS S
 FROM RGplus AS p FULL OUTER
 JOIN RGminus AS m ON p.G=m.G
!V- AS
 (SELECT * FROM V
 WHERE G IN
 (SELECT G FROM RGnet))
!V+ AS
 (SELECT r.G AS G,
 n0(V.S) + r.S AS S
 FROM (V RIGHT OUTER JOIN
 RGnet AS r ON V.G=r.G)

choose(a,b) returns a if a is NOT NULL,
 returns b if a is NULL
n0(a) returns a if a is NOT NULL, 0 otherwise

IVM: Incremental (Materialized)
View Maintenance. Eager version.
Snapshot 0

V0 = V(R1
0, …,Rn

0)

R1
0, …,Rn

0

View

Database tables

Snapshot 1

Table Updates
!R1

+, …, !Rn
+

! R1
-, …, !Rn

-

R1
1, …,Rn

1

V1 = V(R1
1, …,Rn

1)

From logs or
intercepted by
triggers

Problem: Find efficient
view updates
!V+ = f+(!R1

+,…,!Rn
+

r R1
-,…,!Rn

-, V0
 R1

0,…,Rn
0)

 !V- = f-(…)

IVM: Deferred version
Snapshot 0

V0 = V(R1
0, …,Rn

0)

R1
0, …,Rn

0

View

Database tables

Snapshot 1

Table Updates
!R1

+, …, !Rn
+

! R1
-, …, !Rn

-

R1
1, …,Rn

1

V1 = V(R1
1, …,Rn

1)

From logs or
intercepted by
triggers

Problem: Find efficient
view updates
!V+ = f+(!R1

+,…,!Rn
+

r R1
-,…,!Rn

-, V0
 R1

1,…,Rn
1)

 !V- = f-(…)

5

IVM: Self-maintaining version
(not always possible)

Snapshot 0

V0 = V(R1
0, …,Rn

0)

R1
0, …,Rn

0

View

Database tables

Snapshot 1

Table Updates
!R1

+, …, !Rn
+

! R1
-, …, !Rn

-

R1
1, …,Rn

1

V1 = V(R1
1, …,Rn

1)

From logs or
intercepted by
triggers

Problem: Find efficient
view updates
!V+ = f+(!R1

+,…,!Rn
+

r R1
-,…,!Rn

-, V0)
 !V- = f-(…)

Basic IVM Algorithm:
Compose operator IVM rules

●  Rule for V= R S
◆  !V+ =((!R+

 S) U (R !S+)) - (!R+ !S+)

◆  !V- = ???
●  Rule for V= σc R

◆ !V+ = σc !R+

◆ !V- = ???

●  Composition of rules leads to solutions for
 V= T σA>5 W
!V+ = …
!V- = …
●  May rewrite initial expression

14

Example (wlog deferred, i.e., R means R1 and S means S1)

IVM with Caching

● May associate intermediate views
(caches) with subexpressions

● Bottom-up: From updating caches to
reaching the materialized view

● Caches will typically needed indices
● Caches may or may not pay off as they

incur cost for maintaining them (and their
indices)

15

6

Generalizations

● Multiple views
◆ self maintenance may involve a view utilizing

the other views in its computation
● Genuine updates

◆ Not simulated via insertions/deletions
●  Insertions, deletions, updates on tables

and views expressed as DML statements

16

Comparisons

●  High query performance
●  Queries not visible

outside warehouse
●  Local processing at

sources unaffected
●  Can operate when

sources unavailable
●  Extra information at

warehouse
◆  Modify, summarize (store

aggregates)
◆  Add historical information

●  No need for yet another
database

●  More up-to-date data
◆  Depending on specifics of

IVM

●  Query needs can be
unknown

●  Only query interface
needed at sources

=> Lower Total Cost of
Ownership

17

Materialized View Virtual View

Performance revisited: What if indices are not
enough for decent online performance?

●  Buy RAM
●  Use a column database

◆  In analytics queries can give a 10x easily
●  Scalable, parallel processing

◆  Mostly via no SQL
●  Precompute

◆  Fast answers!
◆  Penalty: Cost of maintaining precomputed

results
◆  Applicability depends on schema and queries
◆  Star schemas and summation are a good (but

not the only) target of precomputation

7

Precomputation problems

Steps:
1.  Choose what data to precompute
2.  Use the precomputed data smartly in your

queries
3.  Update smartly the precomputed data as

the database changes (IVM)
Tradeoff:
●  Precomputed data accelerate analytics =>

faster queries
●  But need to be updated => cost

Example: Precomputation and its Use
Database has huge table Sales(product, store, date, amt)

Application issues often this slow query and displays the results
SELECT product, SUM(amt) AS sumamt
FROM Sales
GROUP BY product
To improve performance we precompute table
 ProductSales(product, sumamt)
and insert in it the precomputed data by
INSERT INTO ProductSales (
SELECT product, SUM(amt) AS sumamt
FROM Sales
GROUP BY product)
Now the application issues instead this fast query below
SELECT *
FROM ProductSales

Example (cont’d)
Now we have to keep up to date the
 ProductSales(product, sumamt)
as new sales happen. E.g., if another $10 of product 23 were just sold
UPDATE ProductSales
SET sumamt = sumamt + 10
WHERE product = 23
(in actual code it will use prepared queries)

8

You do not need the “exact” view

●  Consider V1(Product,Customer,Sales) and
V2(Product,Customer,Date,Sales) are
precomputed

●  ProductSales is not precomputed
●  You need to answer the query
SELECT product, SUM(amt)
FROM SALES
GROUPBY product
●  Write it in an alternate way, using one of the

views in the most efficient way

Star Schemas

prodID name price
p1 bolt 10
p2 nut 5

storeID city
c1 nyc
c2 sfo
c3 la

orderID date custID prodID storeId qty amt
o100 1/7/97 53 p1 c1 1 12
o102 2/7/97 53 p2 c1 2 11
105 3/8/97 111 p1 c3 5 50

custID name address city
53 joe 10 main sfo
81 fred 12 main sfo
111 sally 80 willow la

sale

customer

product
store

Star Schema

sale
orderID

date
custID
prodID
storeID

qty
amt

store
storeID

city

product
prodID
name
price

customer
custID
name

address
city

9

Terms

● Fact table
● Dimension tables
● Measures

sale
orderID

date
custID
prodID
storeID

qty
amt

store
storeID

city

product
prodID
name
price

customer
custID
name

address
city

Dimension Hierarchies

store storeId cityId tId mgr
s5 sfo t1 joe
s7 sfo t2 fred
s9 la t1 nancy

city cityId pop regId
sfo 1M north
la 5M south

region regId name
north cold region
south warm region

sType tId size location
t1 small downtown
t2 large suburbs

store
sType

city region

•  Snowflake Schema
•  Constellations

Cube

sale prodId storeId amt
p1 c1 12
p2 c1 11
p1 c3 50
p2 c2 8

c1 c2 c3
p1 12 50
p2 11 8

Fact table view Multi-dimensional cube

dimensions = 2

for

10

3-D Cube

sale prodId storeId date amt
p1 c1 1 12
p2 c1 1 11
p1 c3 1 50
p2 c2 1 8
p1 c1 2 44
p1 c2 2 4

day 2 c1 c2 c3
p1 44 4
p2 c1 c2 c3

p1 12 50
p2 11 8

day 1

Fact table view Multi-dimensional cube

dimensions = 3

Aggregates on Slices

● Add up amounts for day 1
◆ SELECT sum(amt) FROM SALE
◆ WHERE date = 1

sale prodId storeId date amt
p1 c1 1 12
p2 c1 1 11
p1 c3 1 50
p2 c2 1 8
p1 c1 2 44
p1 c2 2 4

81

Aggregates

● Add up amounts by day
◆ SELECT date, sum(amt) FROM SALE
◆ GROUP BY date

sale prodId storeId date amt
p1 c1 1 12
p2 c1 1 11
p1 c3 1 50
p2 c2 1 8
p1 c1 2 44
p1 c2 2 4

ans date sum
1 81
2 48

11

Another Example

● Add up amounts by day, product
◆ SELECT date, sum(amt) FROM SALE
◆ GROUP BY date, prodI

sale prodId storeId date amt
p1 c1 1 12
p2 c1 1 11
p1 c3 1 50
p2 c2 1 8
p1 c1 2 44
p1 c2 2 4

sale prodId date amt
p1 1 62
p2 1 19
p1 2 48

drill-down
rollup

Aggregates

● Operators: sum, count, max, min,
median, avg

●  “Having” clause
● Using dimension hierarchy

◆ average by region (within store)
◆ maximum by month (within date)

Cube Aggregation

day 2 c1 c2 c3
p1 44 4
p2 c1 c2 c3

p1 12 50
p2 11 8

day 1

c1 c2 c3
p1 56 4 50
p2 11 8

c1 c2 c3
sum 67 12 50

sum
p1 110
p2 19

129

. . .

drill-
down

rollu
p

Example: computing sums
Date, product, store dimensions

12

Cube Operators

day 2 c1 c2 c3
p1 44 4
p2 c1 c2 c3

p1 12 50
p2 11 8

day 1

c1 c2 c3
p1 56 4 50
p2 11 8

c1 c2 c3
sum 67 12 50

sum
p1 110
p2 19

129

. . .

sale(c1,*,*)

sale(*,*,*) sale(c2,p2,*)

Extended Cube

c1 c2 c3 *
p1 56 4 50 110
p2 11 8 19
* 67 12 50 129day 2 c1 c2 c3 *

p1 44 4 48
p2
* 44 4 48
c1 c2 c3 *

p1 12 50 62
p2 11 8 19
* 23 8 50 81

day 1

*

sale(*,p2,*)

Aggregation Using Hierarchies

day 2 c1 c2 c3
p1 44 4
p2 c1 c2 c3

p1 12 50
p2 11 8

day 1

region A region B
p1 56 54
p2 11 8

customer

region

country

(customer c1 in Region A;
customers c2, c3 in Region B)

13

What to Materialize?

● Store in warehouse results useful for
common queries

● Example:
day 2 c1 c2 c3

p1 44 4
p2 c1 c2 c3

p1 12 50
p2 11 8

day 1

c1 c2 c3
p1 56 4 50
p2 11 8

c1 c2 c3
p1 67 12 50

c1
p1 110
p2 19

129

. . .
total sales

materialize

Cube Aggregates Lattice

city, product, date

city, product city, date product, date

city product date

all

day 2 c1 c2 c3
p1 44 4
p2 c1 c2 c3

p1 12 50
p2 11 8

day 1

c1 c2 c3
p1 56 4 50
p2 11 8

c1 c2 c3
p1 67 12 50

129

Example assumes fact table is sales(city, product, date, amt)

Cube Aggregates Lattice

city, product

city product

all

Example assumes fact table is sales(city, product, amt) and cities classify into regions

region, product

region

14

Should one precompute joins?

● Notice that we have featured foreign
keys, not printable values. Why?

● Why (city product) and not (city region
product)?

● Minor penalty to find the cities of a
particular region

● Probably larger penalty by having a
larger table
◆ Think space in storage and time to scan it

