
Markov	Chains

.



Statistical	Problem

.

. We may have an underlying evolving system

(new state) = f(old state, noise)

• Input data: series of observations X1, X2 … Xt

• Consecutive speech feature vectors are related to each
other.

• We cannot assume that observations are i.i.d.  



Markov	Process
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• Markov Property: The state of the system at time t+1 depends only 
on the state of the system at time t

X1 X2 X3 X4 X5

[ ] [ ]  x  | X x X    x x X | X x X tttttttt ===== ++++ 111111 PrPr !!

• Stationary Assumption: Transition probabilities are independent of 
time (t)

[ ]1Pr t t ab X   b | X   a p+ = = =

Bounded memory transition model
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Weather:

• raining today 40% rain tomorrow 

60% no rain tomorrow

• not raining today 20% rain tomorrow

80% no rain tomorrow

Markov Process
Simple Example

rain no rain

0.60.4 0.8

0.2

Stochastic Finite State Machine:

Pr(XT+1=rain|XT=rain)=0.4
Pr(XT+1=norain|XT=rain)=0.6
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Weather:

• raining today 40% rain tomorrow 

60% no rain tomorrow

• not raining today 20% rain tomorrow

80% no rain tomorrow

Markov Process
Simple Example

• Stochastic matrix:
Rows sum up to 1

The transition matrix:
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• Given that a person’s last cola purchase was Coke, 
there is a 90% chance that his next cola purchase will 
also be Coke.

• If a person’s last cola purchase was Pepsi, there is 
an 80% chance that his next cola purchase will also be 
Pepsi.

coke pepsi

0.10.9 0.8

0.2

Markov Process
Coke vs. Pepsi Example
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transition matrix:
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Given that a person is currently a Coke purchaser, 
what is the probability that he will purchase Pepsi
three purchases from now?

Markov Process
Coke vs. Pepsi Example (cont)
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Markov	Process
Coke	vs.	Pepsi	Example	(cont)
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Simulation:

week - i
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stationary distribution

coke pepsi
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Eigen-
Value
problem



Steady-State	Probabilities

Property 2: Let π = (π1, π2, . . . , πm) is the m-dimensional row 
vector of steady-state (unconditional) probabilities for 
the state space S =  {1,…,m}. To find steady-state 
probabilities, solve linear system: 

π = πP,  Σj=1,m πj = 1,  πj ≥ 0,  j = 1,…,m

Brand switching example:

π1 + π2 + π2 = 1,  π1 ≥ 0,  π2 ≥ 0,  π3 ≥ 0



Steady-State	Equations	for	Brand	
Switching	Example
π1 = 0.90π1 + 0.02π2 + 0.20π3

π2 = 0.07π1 + 0.82π2 + 0.12π3

π3 = 0.03π1 + 0.16π2 + 0.68π3

π1 + π2 + π3 = 1

π1 ≥ 0,  π2 ≥ 0,  π3 ≥ 0

è Discard 3rd equation and solve the remaining system to get :

π1 = 0.474,  π2 = 0.321,  π3 = 0.205

è q1(0) = 0.25,  q2(0) = 0.46,  q3(0) = 0.29

Total of 4 equations in 
3 unknowns

Steady-state probabilities may not exist for some Markov
chains



Ranking	Nodes	on	the	Graph:	
PageRank	(Google)
• All	Internet	web	pages	are	not	equally	
“important”
www.joe-schmoe.com vs.	www.stanford.edu

• There	is	large	diversity	
in	the	web-graph	
node	connectivity.
Let’s	rank	the	pages	by	
the	link	structure!

J. Leskovec, A. Rajaraman, J. Ullman: 
Mining of Massive Datasets, 

http://www.mmds.org
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Example:	PageRank	Scores

B
38.4 C

34.3

E
8.1
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1.6 1.6 1.6 1.6
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J. Leskovec, A. Rajaraman, J. Ullman: 

Mining of Massive Datasets, 
http://www.mmds.org



Simple	Recursive	Formulation
• Each	link’s	vote	is	proportional	to	the	importance of	
its	source	page

• If	page	j with	importance	rj has	n out-links,	each	link	
gets	rj /	n votes

• Page	j’s	own	importance	is	the	sum	of	the	votes	on	its	
in-links
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j

ki

rj/3

rj/3rj/3

rj = ri/3+rk/4
ri/3 rk/4



PageRank:	The	Markov	Model
• A	“vote”	from	an	important	page	is	
worth	more

• A	page	is	important	if	it	is	pointed	
to	by	other	important	pages

• Define	a	“rank”	rj for	page	j

J. Leskovec, A. Rajaraman, J. Ullman: 
Mining of Massive Datasets, 

http://www.mmds.org
14

∑
→

=
ji

i
j

rr
id

y

ma
a/2

y/2
a/2

m

y/2

Equations:
ry = ry /2 + ra /2
ra = ry /2 + rm

rm = ra /2



Example:	Web	Equations

r = M·r

y       ½    ½    0     y
a   =  ½     0    1     a
m       0    ½    0    m
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J. Leskovec, A. Rajaraman, J. Ullman: 

Mining of Massive Datasets, 
http://www.mmds.org

y

a m

y a m
y ½ ½ 0
a ½ 0 1

m 0 ½ 0

ry = ry /2 + ra /2
ra = ry /2 + rm

rm = ra /2



Solving	the	steady-state	Equations
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J. Leskovec, A. Rajaraman, J. Ullman: 

Mining of Massive Datasets, 
http://www.mmds.org

ry = ry /2 + ra /2
ra = ry /2 + rm

rm = ra /2

Equations:



Eigenvector	Formulation
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Mining of Massive Datasets, 
http://www.mmds.org



PageRank:	Power	Iteration	Method

• Given	a	web	graph	with	n nodes,	where	the	nodes	
are	pages	and	edges	are	hyperlinks

• Power	iteration:	a	simple	iterative	scheme
• Suppose	there	are	N web	pages
• Initialize:	r(0) =	[1/N,….,1/N]T
• Iterate:	r(t+1) =	M	·	r(t)
• Stop	when	|r(t+1)	– r(t)|1 <	ε
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J. Leskovec, A. Rajaraman, J. Ullman: 

Mining of Massive Datasets, 
http://www.mmds.org
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|x|1 = ∑1≤i≤N|xi| is the L1 norm 
Can use any other vector norm, e.g., Euclidean



Markov	Chain	Structure	in	Speech

• Left-right	model

• Ideally	each	phoneme	corresponds	to	a	state	but	it	
may	not	be	the	case	in	practice!
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HMMs

Model likelihood of a sequence of observations as a 
series of state transitions. 

• Set of states set in advance; likelihood of 
state transitions, observed features from 
each state learned

• Each state has an associated feature space

• Often used to find most likely sequence of 
state transitions, according to the model

• Example: recognizing spoken words  

2

ω1 ω2 ω3 ω4 ω6 ω7

/v/ /i/ /t/ /e/ /r/ /b/ /i/

ω0

/-/

ω5

FIGURE 3.11. A left-to-right HMM commonly used in speech recognition. For instance,
such a model could describe the utterance “viterbi,” where ω1 represents the phoneme
/v/, ω2 represents /i/,. . . , and ω0 a final silent state. Such a left-to-right model is more
restrictive than the general HMM in Fig. 3.9 because it precludes transitions “back” in
time. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c⃝ 2001 by John Wiley & Sons, Inc.



Hidden	Markov	Models	- HMM

20

X1 X2 XL-1 XLXi

Hidden states

Observed 
data

H1 H2 HL-1 HLHi
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0.9

fair loaded

H HT T

0.9
0.1

0.1

1/2 1/43/41/2

Hidden Markov Models - HMM
Coin-Tossing Example

Fair/Loaded

Head/Tail

X1 X2 XL-1 XLXi

H1 H2 HL-1 HLHi

transition probabilities

emission probabilities



HMM

• Doubly	embedded	random	process
• One	of	the	process:	Sequence	of		states	is	not	
observable	(hidden)

• The	state	sequence	may	not	be	unique,	even	if	we	
know	that	we	begin	in	state	one.	

• However,	some	state	sequences	may	be	more	likely	
than	others.
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• Learning:	Given	the	HMM	structure	(number	of	
visible	and	hidden	states)	and	a	training	set	of	
visible	state	sequences,	determine	the	transition	
probabilities	for	hidden	and	visible	states

• Evaluation:	Computing	the	probability	that	a	
sequence	of	visible	states	was	generated	by	a	given	
HMM	

• Decoding:	Determine	the	most	likely	sequence	of	
hidden	states	that	produced	a	sequence	of	visible	
states	

23



References

• We	will	follow	the	following	paper:
A	tutorial	on	hidden	Markov	models	and	selected	applications	in	speech	
recognition
LR Rabiner - Proceedings	of	the	IEEE,	1989	- ieeexplore.ieee.org
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• An	introduction	to	hidden	Markov	models
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• Fundamentals	of	Speech	Recognition	1st	Edition
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