Markov Chains




Statistical Problem

. We may have an underlying evolving system
(new state) = f(old state, noise)

» Input data: series of observations X, X, ... X,

« Consecutive speech feature vectors are related to each
other.

« We cannot assume that observations are i.i.d.



Markov Process

* Markov Property: The state of the system at time +1 depends only
on the state of the system at ftime ¢

PI'[X = X, | X, X, = xl'”xt] - PI'[X =X, | X, =X ]‘

t+1

» Stationary Assumption: Transition probabilities are independent of
time (¢)

Pr[Xt+1 =b|Xt =d ]=pab

Bounded memory transition model




Markov Process

Simple Example

Weather:

* raining today I:{} 40% rain tomorrow
|::> 60% no rain tomorrow

* not raining today I:I} 20% rain tomorrow
|::> 80% no rain tomorrow

Stochastic Finite State Machine: o

el 2y
Pr(Xt.1=norain| X+=rain)=0.6 V
Pr(X+.1=rain|X+=rain)=0.4 ‘



Markov Process
Simple Example

Weather:
* raining today I:{} 40% rain tomorrow
|::> 60% no rain tomorrow

* not raining today I:I) 20% rain tomorrow
|::> 80% no rain tomorrow

The transition matrix:
04 06 - Stochastic matrix:

Rows sum up to 1
0.2 0.8



Markov Process
Coke vs. Pepsi Example

» Given that a person's last cola purchase was Coke,
there is a 90% chance that his next cola purchase will

also be Coke.

* If a person's last cola purchase was Pepsi, there is
an 80% chance that his next cola purchase will also be

Pepsi.

transition matrix:

0.9 0.1
02 0.8

P =

0.2



Markov Process
Coke vs. Pepsi Example (cont)

Given that a personis currently a Coke purchaser,
what is the probability that he will purchase Pepsi
three purchases from now?

P3

0.9 0.1

02 0.8

0.83 0.17

0.34 0.66

0781

0.438  0.502



Markov Process

Coke vs. Pepsi Example (cont)
Simulation:

Coke]

PrlX;

0.67

0.66

0.65-

0.64

0.63|

0.62

0.61F

0.6
0

week - {

Eigen-
Value
problem



Steady-State Probabilities

: Let m= (7, my, . .., w,) 1s the m-dimensional row
vector of steady-state (unconditional) probabilities for
the state space S = {1,...,m}. To find steady-state
probabilities, solve linear system:

n=aP, 2., =1 120, j=1,..m

10.90 0.07 0.037
(w,,m,,my )= (m,,7m,,m;) 0.02 0.82 0.16
020 0.12 0.68]

T +mtm=1, 1,=z0, 1,=0, 13=0



Steady-State Equations for Brand
Switching Example

;= 0.907, + 0.027, + 0.207,4
w,=0.077; + 0.827, + 0.127,
3= 0.037;, + 0.167, + 0.687,
Tt try=1

7,20, 1,20, 13=0
=» Discard 3™ equation and solve the remaining system to get :
T, =0.474, 7,=0.321, 7;=0.205
- q:(0)=0.25, ¢,(0)=0.46, ¢g5(0)=0.29

Steady-state probabilities may not exist for some Markov
chains



Ranking Nodes on the Graph:
PageRank (Google)

* All Internet web pages are not equally
“important”

WWW.joe-schmoe.com vs. www.stanford.edu

* Thereis large diversity
in the web-graph

node connectivity.
Let’s rank the pages by

.

the link structure!

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets,
http://www.mmds.org



Example: PageRank Scores

mig >
8%,

Jvec, / iman, J. Ullman:
Mining of Massive Datasets, 12
http://www. mmds org




Simple Recursive Formulation

* Each link’s vote is proportional to the importance of
Its source page

* If page j with importance r; has n out-links, each link
gets r;/ n votes

* Page j's own importance is the sum of the votes on its

in-links
/
j ry/3

ri=r/3+n/4




PageRank: The Markov Model
* A “vote” from an important page is _
worth more

y/2

* A page is important if it is pointed
to by other important pages

* Define a “rank” r; for pagej

0

7.
— l . °
V. = — Equations:
J d ry =ry/2+r,/2
[— ] Y
r, =r,/2+r,
d; ... out-deqaree of r ro=r /2
J. Leskovec, A. Rajaraman, J. Ullman: m a
Mining of Massive Datasets, 14

http://www.mmds.org



Example: Web Equations

y a m

vyl 2| %] 0

al 2| 0| 1

mi 0| 2|0

r=M-r
r, =r,/2+r,/2 yi| |2 2 0
r, =ry/2+r, a =2 0 1
r,=r,/2 m| |0 %2 0

Notice that the web transition matrix M = pPT

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets,
http://www.mmds.org
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Solving the steady-state Equations

* 3 equations, 3 unknowns, EQ¥°li99§i -
y y a
no constants ra =1, /241y
* No unique solution r,=r,/2

 All solutions equivalent modulo the scale factor

* Additional constraint forces uniqueness:
*ry trat+ T, =1
. Solution: 7. = 2 2 1
oliu IOI'\.Ty _E' ra _E' m _E
e Gaussian elimination method works for
small examples, but we need a better method for

large web-size graphs

* We need a new formulation!

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, 16
http://www.mmds.org



Eigenvector Formulation
* The web equations can be written
r=M- -r
* So the rank vector ris an eigenvector of the

stochastic web matrix M
* |In fact, its first or principal eigenvector,

with corresponding eigenvalue 1 NOTE: xis an
* Largest eigenvalue of Mis 1 since M is ﬁ:genvector wgh
i . . . € corresponding
column stochastic (with non-negative entries) sigenvalue A i
* We knowr is unit length and each column of M Ax = Ax

sumstoone, soMr <1

* We can now efficiently solve for r!
The method is called Power iteration

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets,
http://www.mmds.org
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PageRank: Power |teration Method

e Given a web graph with n nodes, where the nodes
are pages and edges are hyperlinks

* Power iteration: a simple iterative scheme

* Suppose there are N web pages . ()
r+ i

e Initialize: r® = [1/N,....,1/N]" v = E q

* |terate: r#1) =M - r(® = Y

* Stop when [r#1) -], <¢ d: .... out-degree of node i

IX|1 = Di<inlXi| is the L1 norm
Can use any other vector norm, e.g., Euclidean

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, 18
http://www.mmds.org



Markov Chain Structure in Speech

* Left-right model

agaaaaan

w N el A

* |deally each phoneme correspondsto a state but it
may not be the case in practice!



Hidden Markov Models -

G
Go—

HMM

-

-
(He Dooo
G-

Hidden states

~

J

Observed
data

Cx D



Hidden Markov Models - HMM

Coin-Tossing Example
transition probabilities

emission probabilities

@
®: ‘\I

(o)
(@)
Head/Tail



HMM

* Doubly embedded random process

* One of the process: Sequence of states is not
observable (hidden)

* The state sequence may not be unique, even if we
know that we begin in state one.

* However, some state sequences may be more likely
than others.



* Learning: Given the HMM structure (number of
visible and hidden states) and a training set of
visible state sequences, determine the transition
probabilities for hidden and visible states

e Evaluation: Computing the probability that a

sequence of visible states was generated by a given
HMM

e Decoding: Determine the most likely sequence of

hidden states that produced a sequence of visible
states
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